#DDMPC-for-AV-steering

同济大学 | 用于自动驾驶汽车转向的数据驱动模型预测控制

摘要

本文介绍了用于自动驾驶汽车转向的数据驱动模型预测控制。随着自动驾驶技术的发展,对车辆控制的要求越来越高,MPC已经成为工业界和学术界广泛研究的主题。现有的基于车辆运动学或者动力学的MPC控制方法存在建模困难、参数众多、非线性强以及计算成本高等挑战。为了解决这些问题,本文提出了一种用于自动驾驶汽车转向的数据驱动MPC控制方法。该方法避免了复杂车辆系统建模的需求,并且以相对较低的计算时间和较小的误差实现了轨迹跟踪。本文通过Carsim-Simulink仿真验证了所提出的算法在特定场景下的控制效果,并且与PID和车辆运动学MPC进行比较分析,证明了所提出算法的可行性和优越性。

主要贡献

本文的贡献总结如下:

1)本文基于自动驾驶汽车的特性,通过修改和设计现有算法,提出了一种用于汽车转向的数据驱动模型预测控制算法;

2)本文通过仿真实验验证了DDMPC应用于自动驾驶汽车转向的可行性,并且通过与其它算法的比较证明了该算法的优越性。

论文图片和表格

总结

本文研究并且实验验证了所提出的用于自动驾驶汽车转向控制的数据驱动MPC算法。实验表明,该算法可以实现稳定的前轮角度控制来跟踪参考轨迹,并且与传统的MPC算法相比,它有效地降低了控制误差和计算时间。

本文今后的工作将着重于增强算法的鲁棒性和实时性,以进一步改进其在各种驾驶条件下的有效性。



#端到端~

“要么拥抱端到端,要么几年后离开智驾行业。”

特斯拉率先吹响了方案更新的号角,无论是完全端到端,还是专注于planner的模型,各家公司基本都投入较大人力去研发,小鹏、蔚来、理想、华为都对外展示了其端到端自动驾驶方案,效果着实不错,非常有研究价值。

为什么需要端到端?

首先我们聊一下当前的主流自动驾驶方案,主要核心部分包括:感知模块、预测模块、规控模块。每个模块相对独立,感知模块给预测模块提供动静态障碍物信息;预测模块为规控模块提供规划的参考,规划再转换为控制指令。从传感器端到控制端,需要多个功能支持,这就不可避免导致了累积误差,一旦碰到问题,需要整个pipeline做分析。而且每个模块的优化,并不能保证整个系统达成最优解。

51c自动驾驶~合集18_自动驾驶

这个时候,就希望有一种模型能够完成感知信息的无损传递,即从传感器端到输出控制策略端,这也是端到端自动驾驶提出的原因。传统定义上感知和规划模块的对接一般是通过白名单(比如机动车、行人、甚至occ输出的非通用几何障碍物)的检测与预测来完成,是人为定义的规则和抽象。随着产品的迭代,每一次都需要添加各类case,设计各种博弈的策略,从模型训练到工程部署再到逻辑设计,时间和人力成本高昂。

51c自动驾驶~合集18_自动驾驶_02

而且这种方式无法罗列所有情况,那么是否可以通过对整个场景的学习抽象,无损的将所有信息传递给PnC部分?这就是我们期望的端到端。端到端核心是优化最终目标且全局可导,作为一个完整的优化任务来看,直接求最优解,而不是先求感知再求规控的最优解。

端到端效果怎么样?

今年各大自动驾驶公司都在预研和落地相关端到端方案,小鹏、蔚来、华为、理想也都对外展示了其端到端方案。由于端到端模型的优势明显,各大自动驾驶公司都在拼命布局揽人,对应岗位薪资水涨船高,某想甚至开出了七位数给到该岗位。

那么各家的端到端自动驾驶效果怎么样呢?先来看看国外的特斯拉:

再来看看国内的UniAD效果:

不得不说,端到端是一个更简约的方法,更具有全场景的优化能力。

端到端有哪些技术栈?

行业里面的端到端主要分为完全端到端方案、专注于planner的端到端方案(包括某鹏的XPlanner)。顾名思义,完全端到端是从传感器直接到规控;而专注于planner的端到端以感知模块的输出作为先验,替换原来以规则作为主要形式的PnC模块。

51c自动驾驶~合集18_自动驾驶_03

从传感器到控制策略的(如果把条件再放松下也可以到轨迹输出)完全端到端方案更为简约,但同样面临一个问题,可解释性差。UniAD用分阶段监督的方法逐步提高了可解释性,但训练仍然是个难题。在足够体量和质量的数据群下,效果能够得到保证,泛化性能也不错。

51c自动驾驶~合集18_自动驾驶_04

而专注于planner的端到端方案,如果深究的话,只能算狭义上的端到端,但更贴合当下的量产方案和任务,而且可解释性也较高,是目前主机厂和自动驾驶公司优先推行和落地的。

如果从信息输入的角度上来看,又可以分为纯视觉方案(UAD、UniAD这类)

和多模态方案(FusionAD这类),传感器成本不断在下降,多模态方案也一直是行业里面都在关注的点。

端到端的难点在哪里?

端到端的优势非常突出,但仍然有很多难点需要攻克。主要在于数据难定义、数据难制作、网络不好训练、模型不好解释优化、评测定义多种多样!很多公司无法像特斯拉一样获取海量数据,这也是个巨大的瓶颈。今年年中,自动驾驶之心收到了很多同学关于端到端实战相关的需求,虽然我们已经筹备过相关的内容,但早期端到端方案不够成熟,更多是以论文切入。工业界使用的方案关注较少,代码层面上也很少提及。

从基础问题,到当下大热的端到端路径规划

1资本市场狂欢下的机器人产业

以前段时间刚发布了,号称“地表最先进”人形机器人 Figure 02 的初创公司 Figure AI 为例,其背后的资方几乎占据了硅谷的半壁江山

Figure AI 的背后就除了有大名鼎鼎的Open AI,还有微软、亚马逊、英特尔资本、LG和三星等诸多知名科技巨佬。

国内的云深处(四足机器人公司前几天宣布完成B+轮融资,作为全球四足机器人五大厂商之一,本次投资方包括华建函数投资、涵崧资管、深智城产投、莫干山高新投资等机构。

光说这几家的名字可能有部分人觉得不熟悉,但他们背后几乎都有国资机构的身影。而且在云深处的这几轮融资中,国资机构可谓是出现得越来越频繁了。

足以可见无论是国内外,资本市场对于机器人产业腾飞的看好,以及政策、股市释放出的诸多利好信号。

2移动机器人技术的发展

路径规划是机器人技术中的关键过程,同时在自动驾驶和物流配送等领域发挥着重要作用。

因此,本次我们重点聊聊移动机器人的运动规划问题。

1、基础问题:训练效率与组合优化 

在路径规划中,训练效率和复合优化是两大挑战。

训练效率:在机器学习特别是强化学习应用于移动机器人路径规划时,训练效率是核心挑战之一。算法需要在有限的时间内学习复杂的环境交互,以达到高效导航。研究者通过设计更高效的探索策略、利用迁移学习和多任务学习等方法,来加速模型的收敛,减少训练时间和资源消耗。 

组合优化:移动机器人路径规划中的组合优化问题,如寻找最短路径、避开障碍物的同时考虑多目标约束,是一个NP-hard问题。采用启发式算法(如遗传算法、模拟退火、A*搜索等)和混合整数规划方法,可以在保证一定解质量的同时,提高求解速度,实现路径的优化。 

关于这一问题,西北工业大学引入了高效渐进策略增强(EPPE)框架,该框架结合了稀疏奖励的优势,旨在为智能体实现全局最优策略,同时提供过程奖励以实时反馈智能体的策略调整。此外,还提出了增量奖励调整(IRA)模型,以逐步增加复合优化部分的奖励权重。支持IRA模型的微调策略优化(FPO)模型在整个过程中逐步调整学习率。

对于他们这项工作有兴趣的朋友,可以在8月13日晚和西北工业大学航空宇航科学与技术专业的赵望同学进行进一步深入探讨(其论文在控制会议上发表并获得杰出论文)。

2、集群规划问题 

在移动机器人运动规划中,还有一个经久不衰的问题,那就是集群规划。

在集群规划中,多个移动机器人需要协同工作,完成复杂任务,如搜索与救援、货物运输等。这要求机器人之间有高效的通信机制和协调策略,以避免碰撞、优化整体路径和任务分配。研究重点包括分布式规划算法、多机器人协同策略以及动态环境下的自适应调整。

在传统轨迹优化中考虑避碰可以实现集群的流畅飞行。

然而,在高通信延迟和快速机动时,其难以实现较高的机间避碰频率。集中式轨迹规划可以释放大量算力用于集群感知、定位和决策,而高频率分布式避碰控制则更适用于通信延迟和快速机动的场景。

因此,关于这一问题也值得技术研究人员,深入探讨。

3、端到端路径规划 

近年来,端到端(End-to-End)学习在移动机器人路径规划中的应用是一大热点。这种方法直接从传感器输入到行为输出进行学习,无需显式建模环境或规划中间步骤。

其中“端到端控制”是指模型输入传感器数据输出车辆的控制信号。

“端到端路径规划”是指模型输入传感器数据输出规划(预测)的路径点,然后用控制算法将这些点转化成车辆的控制信号。与常规的路径点生成方式不同。

8月份在慕尼黑工业大学主讲自动驾驶相关课程,指导二十多名硕士研究生完成论文研究的周立国老师将就“端到端路径规划”中路径点的链式生成,可以在许多场景下获得较好的规划效果,进行具体分享。

3深入移动机器人运动规划

得益于巨大的潜力市场、广阔的应用领域、政策的大力支持,使得【机器人赛道】这个万亿市场强势开启,其迅猛程度不亚于N年爆火的智能驾驶行业。

因此,本月深蓝学院特意筹办了【移动机器人运动规划】主题月,除了建立交流群供大家探讨之外,还邀请了三位研究不同细化方向的研究人员开设了3场直播交流分享,以期促进国内对于这一主题的研究与了解。

本次内容涵盖:从基础问题的研究(训练效率和组合优化),到经久不衰的集群规划问题,最后落到当下大热的端到端路径规划研究上。开发板商城 天皓智联 TB上有视觉设备哦 支持AI相关~ 大模型相关也可用 whaosoft aiot自动驾驶也可以哦




#112


#11


#33333