Deepseek V3开源!多语言编程能力飙升,力压Claude 3.5 Sonnet V2

备受期待的Deepseek V3终于开源!这款全新的AI模型在多语言编程能力上取得了重大突破,其在aider多语言编程测评中的表现,甚至超越了Claude3.5Sonnet V2等竞争对手,引发了业界广泛关注。

据了解,Deepseek V3相比之前的版本,在性能上实现了质的飞跃。Deepseek V2.5在aider测评中的成功率仅为17%,而V3则暴增至48%,这充分展现了其强大的进步。

在这里插入图片描述
Deepseek V3采用了高达6850亿参数的混合专家(MoE)架构。该架构包含256个专家,并使用sigmoid路由方式,每次选取前8个专家(topk=8)参与计算,这种设计使得模型能够更加高效地处理复杂任务,并提高了性能。

Deepseek V3的开源,无疑将为AI社区带来新的活力。其强大的编程能力有望在软件开发、自动化等领域发挥重要作用,为各行各业的智能化升级注入新的动力。

地址:https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/tree/main

### DeepSeek V3Claude-3.5-Sonnet 的性能特征差异 #### 模型规模与结构 DeepSeek-V2-Lite 是一个拥有15.7B参数的模型,每个令牌激活大约2.4B参数[^1]。相比之下,Claude-3.5-Sonnet的具体参数量未提及,但通常情况下,不同版本的Claude系列会根据具体应用场景调整其大小。 #### 训练数据集 对于DeepSeek-V2而言,在训练过程中采用了精心设计的数据构建方法、特定的超参数配置以及高效的基础设施来支持大规模预训练过程。然而,关于Claude-3.5-Sonnet所使用的训练数据详情并未提供明确的信息。 #### 上下文长度处理能力 DeepSeek团队特别提到了针对长上下文进行了扩展优化措施,这表明该模型可能具备更好的长期依赖捕捉能力和更广泛的应用场景适应性。而Claude-3.5-Sonnet在这方面的表现则取决于具体的实现细节和技术文档中的说明。 #### 对齐技术应用 在对齐方面,DeepSeek项目引入了监督微调(SFT)和基于强化学习的方法来进行改进,并对其效果进行了评估和其他讨论;而对于Claude-3.5-Sonnet来说,则需查阅官方发布的资料了解其采用的技术路径及其成效。 ```python # 这里仅作为示例展示如何对比两个模型的部分特性 def compare_models(model_a, model_b): comparison = { "Parameter Count": {"Model A": f"{model_a['params']} billion", "Model B": f"{model_b['params']} billion"}, "Context Length Handling": {"Model A": model_a['context_handling'], "Model B": model_b['context_handling']}, "Alignment Techniques Used": {"Model A": ", ".join(model_a['alignment_techniques']), "Model B": ", ".join(model_b['alignment_techniques'])} } return comparison example_comparison = compare_models( {'params': 15.7, 'context_handling': 'Extended long context', 'alignment_techniques': ['Supervised Fine-Tuning (SFT)', 'Reinforcement Learning']}, {'params': None, 'context_handling': '?', 'alignment_techniques': []}) print(example_comparison) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值