libtorch-模型导出

概念区分
推荐使用的是jit.trace
img = torch.zeros(batch_size, 3, *img_size).to(device)  # image size(1,3,320,192) iDetection

def export_torchscript(model, img, file, optimize):
    # TorchScript model export
    prefix = colorstr('TorchScript:')
    try:
        print(f'\n{prefix} starting export with torch {torch.__version__}...')
        f = file.with_suffix('.torchscript.pt')
        # 这里导出模型
        ts = torch.jit.trace(model, img, strict=False)
        (optimize_for_mobile(ts) if optimize else ts).save(f)
        
        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        return ts
    except Exception as e:
        print(f'{prefix} export failure: {e}')
c++中如何调用?

cpp文件中,<torch/script.h>头文件包含所有LibTorch库文件,main函数接收命令行参数,使用torch::jit::script::Module创建module对象用以加载模型,使用torch::jit::load函数加载命令行参数指定的模型,加载失败时输出error loading the module,成功则输出ok

#include <torch/script.h>
torch::jit::script::Module module;
    try {
        module = torch::jit::load(model_path);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值