傅里叶变换--图说

傅里叶

法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。

傅里叶变换将时域函数转换到频域上,可以用来解决实际的工程问题,如在音频特征的提取处理,图像特征的提取处理,另外也可以用来解决实际时域数学计算的困难性,如简化求解微分方程。
傅里叶级数和傅里叶变换都源自于傅里叶原理得出;傅里叶变换是从傅里叶级数推演而来的,傅里叶级数是所有周期函数都可以分解成一系列的正交三角函数,这样,周期函数对应的傅里叶级数即是它的频谱函数。

题外话:世界好神奇,数学好神奇。泰勒公式用多项式拟合所有函数,傅里叶变换用波函数拟合所有函数。
量子具有波粒二象性,微观粒子都有波粒二象性,各种频谱的电磁波叠加就是白光。。。

傅里叶级数

时域到频域变换

首先我们来讨论傅里叶级数,
任何周期函数,都可以看作是不同振幅,相位,频率的波函数的叠加。如下图所示。
在这里插入图片描述
周期函数可以近似为多个不同频率的波函数的叠加。从而将周期函数转化为频域级数 Σ \Sigma Σ。将时域信号转化为频域信号(波函数带走时间维度)。
时域或者频域其实是函数的不同表示方式。

将函数近似为离散频域波函数叠加。此时波函数只用频率、幅值、相位三个参数表示,即, f ( t ) − > Σ g ( A , ω , ψ ) f(t)->\Sigma g(A,\omega,\psi) f(t)>Σg(A,ω,ψ)
在这里插入图片描述

频域表示需要:频率、相位及幅值三个参数。
在这里插入图片描述
傅里叶级数只能近似原函数,如果要完全匹配,则需要无穷个不同波叠加。无穷个不同的波函数叠加: Σ g ( A , ω , ψ ) = ∫ g ( A , ω , ψ ) d A d ω d ψ \Sigma g(A,\omega,\psi)=\int g(A,\omega,\psi)dA d\omega d\psi Σg(A,ω,ψ)=g(A,ω,ψ)dAdωdψ。这便是普通的傅里叶级数。

频域到复频域变换

根据欧拉公式,可以将三角函数(波函数)用e指数形式表述,进而引出傅里叶级数的指数形式。
正弦波可以看成是圆周运动在时域上的表示,如下图,平面圆周纵轴映射为 s i n ( t ) sin(t) sin(t)函数
在这里插入图片描述
多个波叠加就像形体公转自转一样
在这里插入图片描述
多叠加一个波就多一个圆,如下图,每次加入左边所列的波函数,会形成右边的轨迹。
在这里插入图片描述
时域到复频域映射
可以使用欧拉方程将波函数软化为指数复频域。时域-》频域-》复频域。
欧拉公式:
e π i + 1 = 0 e^{πi}+1=0 eπi+1=0**

e i x = c o s x + i s i n x e^{ix}={\rm cos}x+i{\rm sin}x eix=cosx+isinx
正弦信号加入虚部 i i i则将波函数映射在复数域上。 e i t e^{it} eit就是在复数域上做圆周运动相比平面的圆周运动。
复数域圆周运动多了一个维度,横轴(实部)映射为 c o s ( t ) cos(t) cos(t),纵轴(虚部)映射为 s i n ( t ) sin(t) sin(t)
在这里插入图片描述
可知,做圆周运动,在周期T后又回到原点,所以:
在这里插入图片描述
利用复频域对时间的积分,可以将时域函数去除时间信息。

因此可用 e i t e^{it} eit来表示 c o s ( t ) cos(t) cos(t) s i n ( t ) sin(t) sin(t)函数。
即: c o s ( t ) = e i t + e i t 2 cos(t) =\frac {e^{it}+e^{it}} {2} cos(t)=2eit+eit s i n ( t ) = e i t − e i t 2 sin(t) =\frac {e^{it}-e^{it}} {2} sin(t)=2eiteit

函数 f ( x ) f(x) f(x)可以用波函数拟合,波函数可以映射到复频域,可得:傅里叶级数的指数表达
f ( x ) = Σ − ∞ + ∞ c k e i k t f(x)=\Sigma _{-\infty}^{+\infty}c_ke^{ikt} f(x)=Σ+ckeikt
其中 k k k为累加变量。

傅里叶变换

将非周期函数看作是周期为无穷的函数,将傅里叶级数写成积分形式,便引入了傅里叶变换
傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在这里插入图片描述
(a).周期函数,可以通过傅立叶级数画出频域图
(b).增长周期,频域图变得越来越密集
©. 得到傅立叶变换,频域图变为连续的曲线

随着周期的增长,频域中的频率越来越靠拢(上图中有歧义,bc图并不是在a的频率基础上继续填空,而是频率小紧靠拢),如下:
在这里插入图片描述

变换公式原理:

傅里叶变换公式
时->频: F ( ω ) = ∫ − ∞ + ∞ f ( t ) e i w t d t F(\omega)=\int^{+\infty}_{-\infty}f(t)e^{iwt}dt F(ω)=+f(t)eiwtdt
频->时: f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i w t d ω f(t)={1\over 2\pi} \int^{+\infty}_{-\infty}F(\omega)e^{iwt}d\omega f(t)=2π1+F(ω)eiwtdωt

傅里叶级数:
f ( x ) = Σ − ∞ + ∞ c k e i k t f(x)=\Sigma _{-\infty}^{+\infty}c_ke^{ikt} f(x)=Σ+ckeikt
其中 k k k为累加变量。

将上式写成如下形式,并两端同乘以其中一个负的指数幂:
在这里插入图片描述
将上式写成积分形式:
在这里插入图片描述
就得到傅里叶指数情况下的系数:
在这里插入图片描述
从而知时域到复频域变换。

拉式变换

https://blog.csdn.net/yyl424525/article/details/98790080
傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数 就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于 时原函数也衰减到零了,从而满足绝对可积。

数学描述:
lim ⁡ x → + ∞ f ( x ) e − σ x = 0 , σ ∈ R \lim_{x \to +\infty}f(x)e^{-\sigma x}=0,\sigma \in R limx+f(x)eσx=0,σR
对衰减处理后的函数进行傅里叶变换:
F ( ω ) = ∫ 0 + ∞ f ( t ) e − σ x e i w t d t = ∫ 0 + ∞ f ( t ) e ( − σ x + i w ) t d t F(\omega)=\int^{+\infty}_{0}f(t)e^{-\sigma x}e^{iwt}dt=\int^{+\infty}_{0}f(t)e^{(-\sigma x+iw)t}dt F(ω)=0+f(t)eσxeiwtdt=0+f(t)e(σx+iw)tdt
令:
s = σ + i ω s=\sigma + i\omega s=σ+iω
得:
F ( s ) = ∫ 0 + ∞ f ( t ) e s t d t F(s)=\int^{+\infty}_{0}f(t)e^{st}dt F(s)=0+f(t)estdt

应用

1.傅里叶可用于提取音频及图像频率信息,进行处理。
图像
提取图像高频图像信息,高频指幅值比较高的频率。
将图像映射到频域,提取高频信息,在转回图像,会得到轮廓。
将图像中低频信号剔除,可用于美颜等。
在这里插入图片描述
音频
可用于滤噪,或者实现男女声切换等等。

2.数学计算
可用于简化微积分计算。
使用拉式变换可用于将时域控制传递函数映射到复频域,简化系统分析。

参考

https://zhuanlan.zhihu.com/p/19763358
https://www.zhihu.com/question/21665935
https://baijiahao.baidu.com/s?id=1627167359710942781&wfr=spider&for=pc
https://baike.baidu.com/item/傅里叶级数/5210337?fr=aladdin

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值