直接法FC(Forward Compositional )&IC( Inverse Compositional )&ESM求解方法介绍

直接法FC(Forward Compositional )&IC( Inverse Compositional )&ESM求解方法介绍

论文:Efficient Compositional Approaches for Real-Time Robust Direct Visual Odometry from RGB-D Data
以下公式与原文出入较大,批判阅读

一、介绍

这篇论文讲述使用RGBD实现直接法VO的求解思路

基于直接法的求解方法:
提出三种求解思路:

  • Forward Compositional (FC);
  • Inverse Compositional (IC);
  • Efficient Second order Minimization (ESM)。

二、约束定义

在这里插入图片描述
即: arg ⁡ min ⁡ p   ∣ ∣ I ∗ ( ω ( 0 , X ) ) − I ( ω ( p , X ) ) ∣ ∣ 2 \underset p {\arg \min } \ ||I^*(ω(0,X))-I(ω(p,X))||^2 pargmin I(ω(0,X))I(ω(p,X))2

其中,X为参考帧相机坐标系下的三维空间点。
上述方程就是典型的直接法的约束方程,使用的是FC的求解思路。

已知参考帧的灰度图像 I ∗ I^\ast I与深度图 D ∗ D^\ast D,以及当前帧的灰度图像 I I I,以及对应的深度图 D D D

目标是计算出参考帧与当前帧6自由度相机的运动,设为 T ( p ) , p ∈ s e ( 3 ) T\left(\pmb{p}\right), \pmb {p}\in se\left(3\right) T(ppp),pppse(3),表示将当前帧中的三维点转化到参考帧下。即:
在这里插入图片描述
∑ i p i G i \sum_{i}{p_iG_i} ipiGi构成李代数p对应的反对称矩阵。后续简化该写法为:
在这里插入图片描述
X X X为参考帧下的一个三维坐标点,
在这里插入图片描述
ω ( p ,   X ) \omega\left(p,\ X\right) ω(p, X)的定义如下:
在这里插入图片描述
ω ( p ,   X ) \omega\left(p,\ X\right) ω(p, X)可以将参考帧下的三维点X转换为当前帧的图像坐标。
从而可知 I ( ω ( p ,   X ) ) I\left(\omega\left(p,\ X\right)\right) I(ω(p, X)),为与参考帧三维点X对应的当前帧图像灰度值。

三、求解思路:

目前很多求解使用的高斯牛顿的求解方法,不用求解H矩阵。求解的迭代公式如下:这里与原文一致,使用右乘思路。
在这里插入图片描述
其中:
在这里插入图片描述

3.1 Forward Compositional (FC)

求解思路:在参考帧( I ∗ I^* I)中提取关键点,利用已知深度,得到参考帧相机坐标系下的空间三维点 X X X,求解参考帧( I ∗ I^* I)到当前帧( I I I)之间的相机位姿变换矩阵,使得将三维点 X X X从参考帧映射到当前帧 X ′ X' X后,最后映射到当前帧图像,所得的当前帧图像灰度值相匹配(等( I ∗ = I I^*=I I=I))。

FC为普通,最常用的求解思路,定义约束方程如下:
在这里插入图片描述
即: arg ⁡ min ⁡ p   ∣ ∣ I ∗ ( ω ( 0 , X ) ) − I ( ω ( p , X ) ) ∣ ∣ 2 \underset p {\arg \min } \ ||I^*(ω(0,X))-I(ω(p,X))||^2 pargmin I(ω(0,X))I(ω(p,X))2
令:
r ( p ) = I ( ω ( p , X ) ) − I ∗ ( ω ( 0 , X ) ) r(p) = I(ω(p,X)) -I^*(ω(0,X)) r(p)=I(ω(p,X))I(ω(0,X))
r r r雅可比求解如下所示:
在这里插入图片描述

3.2 Inverse Compositional (IC);

求解思路,在当前帧( I I I)中提取关键点,利用已知深度,得到当前帧相机坐标系下的空间三维点 X ′ X' X,求解当前帧( I I I)到参考帧( I ∗ I^* I)之间的相机位姿变换矩阵,使得将三维点从当前帧映射到参考帧后,最后映射到参考帧图像,所得的图像灰度值相匹配(等( I ∗ = I I^*=I I=I))。

将原约束方程等价如下:

arg ⁡ min ⁡ p   ∣ ∣ I ∗ ( ω ( p ∗ , X ′ ) ) − I ( ω ( 0 , X ′ ) ) ∣ ∣ 2 \underset p {\arg \min } \ ||I^*(ω(p^*,X'))-I(ω(0,X'))||^2 pargmin I(ω(p,X))I(ω(0,X))2
其中:
  X ′ {\ X'}  X为当前帧下的三维空间点;
p ∗ ∘ p = I → T ( p ∗ ) ∙ T ( p ) = I \pmb{p}^*\circ\pmb{p}=\pmb{I}\rightarrow\pmb{T}(\pmb{p}^*)\bullet\pmb{T}(p)=I pppppp=IIITTT(ppp)TTT(p)=I,李代数的交错性,可知 p ∗ = − p \pmb{p}^*=-\pmb{p} ppp=ppp
则对应的雅可比矩阵求解应为: 以下的 J 2 J^2 J2不是平方,是指代第二个方法的雅可比矩阵的意思
在这里插入图片描述


但是,在匹配过程中,我们通常提取参考帧的特征点,在当前帧中去对应,并解算得到相机两帧之间的位姿变换。因此,一种新的迭代方法被提出,约束方程定义如下:
在这里插入图片描述
在这里插入图片描述
雅可比矩阵 J i c ( 0 ) J_{ic}(0) Jic(0)分为两部分,第一部分是特征点的图像梯度,第二部分则可以看作是相机移动与特征点图像坐标的变化的关系。

以上约束方程的解释:
当得到最优解后, δ → 0 ,   I   =   I ∗ \delta\rightarrow0,\ I\ =\ I^* δ0 I = I,设 p ∗ p^* p为最后最优解。
T ( p ∗ ) X = X ′ T\left(p^*\right)X=X^\prime T(p)X=X

在迭代过程中, p p p尚未使约束方程达到最优解,使用 δ \delta δ确定 p p p的下降方向。此时 p p p为上一步迭代预估值,使用 p p p将参考帧对应的相机坐标系下的三维点X映射到当前坐标系下,设为 X ′ ′ X^{\prime\prime} X,注意: X X X在参考坐标系, X ′ X^\prime X X ′ ′ X^{\prime\prime} X均在当前坐标系。
T ( p ) X = X ′ ′ T\left(p\right)X=X^{\prime\prime} T(p)X=X

为了满足IC约束, δ \delta δ需使 I ∗ I^* I也对应到 X ′ ′ X^{\prime\prime} X,因此 I I I I ∗ I^* I去匹配 X ′ ′ X^{\prime\prime} X。即使:
T ( δ ) T ( p ∗ ) X = X ′ ′ = T ( p ) X T\left(\delta\right)T\left(p^\ast\right)X=X^{\prime\prime}=T\left(p\right)X T(δ)T(p)X=X=T(p)X
得:
T ( δ ) T ( p ∗ ) = T ( p ) ⇒   T ( p ∗ ) = T − 1 ( δ ) T ( p ) = T ( − δ ) T ( p ) T\left(\delta\right)T\left(p^\ast\right)=T\left(p\right)\Rightarrow\ T\left(p^\ast\right)=T^{-1}\left(\delta\right)T\left(p\right)=T\left(-\delta\right)T\left(p\right) T(δ)T(p)=T(p) T(p)=T1(δ)T(p)=T(δ)T(p)

即使用上式能使, p p p p ∗ p^* p靠拢。

利用此解法,有一个重要的优点,因为 I ∗ I^* I δ \delta δ是位于0点求导,因此该约束方程的雅可比矩阵直接固定,只用计算残差 ( I ( p ) − I ∗ ) (I(p)-I^*) (I(p)I),而不像FC或者IC的前一种解法一样,每次迭代,雅可比均需要更新。


3.3 Efficient Second order Minimization (ESM)

可以粗略看成,将FC与IC结合,求平均的解法。
即整合FC与IC的约束方程:
arg ⁡ min ⁡ p   ∣ ∣ I ∗ ( ω ( 0 , X ) ) − I ( ω ( p , X ) ) ∣ ∣ 2 + ∣ ∣ I ∗ ( ω ( − p , X ′ ) ) − I ( ω ( 0 , X ′ ) ) ∣ ∣ 2 \underset p {\arg \min } \ ||I^*(ω(0,X))-I(ω(p,X))||^2+ ||I^*(ω(-p,X'))-I(ω(0,X'))||^2 pargmin I(ω(0,X))I(ω(p,X))2+I(ω(p,X))I(ω(0,X))2

论文中有证明,此处只有最后用法:
J 2 = 1 2 ( J 1 + J 2 ) J^2=\frac{1}{2}\left(J^1+J^2\right) J2=21(J1+J2)
而由于上约束方程减号两侧一个选用参考帧的点作为关键点,一个选用当前帧的点作为关键点,所以可以用FC结合IC的第二求解思路,得到新的雅可比计算思路:

J 2 = 1 2 ( J 1 + J I C ( 0 ) ) J^2=\frac{1}{2}\left(J^1+J_{IC}(0)\right) J2=21(J1+JIC(0))

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值