前言
本篇介绍向量空间的有关内容。向量空间实际上是一个群。
向量空间
定义:向量空间是由向量构成的非空集合 V V V,该集合上定义了两种运算,即加法和标量乘法,并且存在一个零向量 0 ⃗ \vec 0 0;向量空间中所有向量的运算都是封闭的,即向量空间中的运算不会超出空间外( u + v ∈ V , a 1 u ∈ V u+v\in V, a_1u\in V u+v∈V,a1u∈V)。
举例: R n R^{n} Rn是一个向量空间,包含了所有n维向量。
基
向量空间 V V V中的所有向量如果能够被一组线性无关的向量 v ⃗ 1 , v ⃗ 2 , … , v ⃗ k \vec v_1,\vec v_2,\dots, \vec v_k v1,v2,…,vk的线性表示,则称该向量组是向量空间 V V V的一个基。一个向量空间可以有很多组基,但是基的维度是相同的。
子空间
定义:由向量构成的非空集合 H H H中,存在向量空间 V V V中的零向量,并且 H H H中任意的向量加法和标量乘法都是封闭的,则 H H H是 V V V的一个子空间。
可以看出, H H H是自身的子空间, H H H是 V V V的子空间, V V V是 R n R^n Rn的子空间。
生成子空间
定义:向量 v ⃗ 1 , v ⃗ 2 , … , v ⃗ k \vec v_1,\vec v_2,\dots, \vec v_k v1,v2,…,vk在向量空间 V V V中,则 v ⃗ 1 , v ⃗ 2 , … , v ⃗ k \vec v_1,\vec v_2,\dots, \vec v_k v1,v2,…,vk的所有线性组合表示的向量的集合 H H H是 V V V的一个子空间,记 H = S p a n { v ⃗ 1 , v ⃗ 2 , … , v ⃗ k } H=Span\{\vec v_1,\vec v_2,\dots, \vec v_k \} H=Span{v1,v2,…,vk},称 H H H为 { v ⃗ 1 , v ⃗ 2 , … , v ⃗ k } \{\vec v_1,\vec v_2,\dots, \vec v_k \} {v1,v2,…,vk}生成的 V V V的子空间。
生成集定理:如果 S = { v ⃗ 1 , v ⃗ 2 , … , v ⃗ k } ∈ V , H = S p a n { v ⃗ 1 , v ⃗ 2 , … , v ⃗ k } S=\{\vec v_1,\vec v_2,\dots, \vec v_k \ \}\in V, H=Span\{\vec v_1,\vec v_2,\dots, \vec v_k \} S={v1,v2,…,vk }∈V,H=Span{v1,v2,…,vk}, S S S中的某个向量 v ⃗ i \vec v_i vi是其它向量的线性组合,则将 v ⃗ i \vec v_i vi去除后的 S S S仍然能够生成向量空间 H H H,并且如果 H ≠ { 0 } H \ne \{0\} H={0},则 S S S的某一子集是向量空间 H H H的基。
列空间
定义:矩阵 A A A的列向量生成的向量空间称为 A A A的列空间,记为 C o l A Col A ColA。 C o l A Col A ColA是 A A A的列向量的所有线性组合的集合。
结合上一篇矩阵乘法的本质可知,方程 A x = b Ax=b Ax=b是否有解,就是判断向量 b b b是否在 A A A的列空间中。
如果 A ∈ R m × n A\in R^{m\times n} A∈Rm×n,则 C o l A ∈ R n Col A\in R^n ColA∈Rn
零空间
定义:满足矩阵方程 A x = 0 Ax=0 Ax=0的所有解向量的集合称为 A A A的零空间,记为 N u l A Nul A NulA。
如果 A ∈ R m × n A\in R^{m\times n} A∈Rm×n,则 N u l A ∈ R m Nul A\in R^m NulA∈Rm
向量空间的维数
向量空间 V V V的一个基中包含的向量个数称为向量空间的维数,记为 d i m V dim V dimV。
C
o
l
A
Col A
ColA的维数是矩阵
A
A
A的列向量的主元列数。
N
u
l
A
Nul A
NulA的维数是方程
A
x
=
0
Ax=0
Ax=0 的自由变量的个数。
矩阵的秩
对于矩阵 A ∈ R m × n A\in R^{m\times n} A∈Rm×n, A A A的秩即 A A A的列空间的维数,即 r a n k ( A ) = d i m C o l A rank(A)=dim Col A rank(A)=dimColA,并且有 r a n k A + d i m N u l A = n rank A+dim Nul A=n rankA+dimNulA=n。