多元微积分_stokes定理证明

假设曲面S是关于(x,y)的函数,xy属于R

任何属于R的一点x,y,只能在S确定一点,

可以看做S是R在xy在空间里的映射,对于每一点x,y我们都可以求出其高度z

因此我们下面的证明不适用于R内的一点在S上映射大于一点的情况

**条件:**x,y函数是具有连续二阶导数的

z对于x取偏导然后对y取偏导等于先对y取偏导再对x取偏导: z x y = z y x z_{xy}=z_{yx} zxy=zyx

向量场函数F

在这里插入图片描述
我们来证明c的积分就等于s的双重积分

在这里插入图片描述
旋度 就等于 ∇ \nabla 与F的叉积

在这里插入图片描述
算出旋度,需要知道 d s ⃗ d\vec{s} ds

已知s是z关于x和y的函数,需要参数化s的表达式

在i方向上,标量(参数)是x

在j方向上,标量(参数)是y

在k方向上,标量(参数)是关于(x,y)的函数

定义域是 ( x , y ) ∈ R (x,y)\in R (x,y)R
在这里插入图片描述
在这里插入图片描述
d r ⃗ d\vec{r} dr 是r对x,y偏导的叉积(叉积,行列式,面积)

在这里插入图片描述

这里要注意曲面s的方向

在这里插入图片描述
接下来计算叉积

先取x偏导,y作为常数

再取y偏导,x作为常数
在这里插入图片描述
有了 c u r l F ⃗ curl \vec{F} curlF d s ⃗ d\vec{s} ds 我们来计算点积

在这里插入图片描述
下面我们按照常规的方法计算下c的积分 F ⃗ . d r ⃗ \vec{F}.d\vec{r} F .dr
在这里插入图片描述
先通过计算c1来构建

定义c1是关于x,y的函数,定义域在a,b之间

xy平面内的向量场G

那么c1的积分= G ⃗ . d r ⃗ \vec{G}.d\vec{r} G .dr
在这里插入图片描述

带入dr
在这里插入图片描述
再来看c如何参数化

已知c是关于x,y的函数,相比于c1,多了z分量

而z就是关于x,y的函数

在这里插入图片描述
c的积分= F ⃗ . d r ⃗ \vec{F}.d\vec{r} F .dr

F的标量是P , Q, R

d r ⃗ d\vec{r} dr 可以表示成 d r ⃗ d t . d t \frac{d\vec{r}}{dt}.dt dtdr .dt

z是x,y的函数,那么由链式法则 d z d t = ∂ z ∂ x ∂ x ∂ t + ∂ z ∂ y ∂ y ∂ z \frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial z} dtdz=xztx+yzzy

在这里插入图片描述
简化表达式

1.R分别乘以括号里的项
2.将相同导数项的系数合并

在这里插入图片描述
这是我们评估的c的积分,再与c1 的积分对比:
在这里插入图片描述
去掉dt参数化
在这里插入图片描述
求出了c1的线积分

依据格林定理(stokes的二维)等于R的面积分

取dy的标量对x的偏导,减去dx的标量对y的偏导

1.先来求 ∂ Q ∂ x \frac{\partial Q}{\partial x} xQ,Q是关于(x,y,z)的函数,而z又是关于(x,y)的函数

由链式法则得到

在这里插入图片描述

再求 ∂ R z y ∂ x \frac{\partial R_zy}{\partial x} xRzy

在这里插入图片描述

简化表达式

在这里插入图片描述
有“**条件:**x,y函数是具有连续二阶导数的

z对于x取偏导然后对y取偏导等于先对y取偏导再对x取偏导: z x y = z y x z_{xy}=z_{yx} zxy=zyx

消去相同项

提取出在z_x,z_y

得到双重面积分的表达式

在这里插入图片描述
这与我们应用stokes计算的积分相等
在这里插入图片描述
关于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值