TensorFlow 2.0常用函数

1. 将numpy格式转为tensor类型  tf.convert_to_tensor(数据名, dtype = 数据类型)

2. 将tensor类型强制转换成其他类型 tf.cast(张量名,dtype =数据类型)

3. 计算张量维度上元素的最小值  tf.reduce_min(张量名)

    计算张量维度上元素的最大值  tf.reduce_max(张量名)

4. axis 0表示列    1表示行     不指定表示所有

   计算张量维度上元素的平均值  tf.reduce_mean(张量名, axis = 操作轴)

   计算张量维度上元素的最大值  tf.reduce_sum(张量名, axis = 操作轴)

5.tf.variable()将变量标记为可训练,被标记的变量会在反向传播中记录梯度信息

6.四则运算: tf.add() , tf.subtract(),  tf.multiply(), tf.divide()

7.其他运算:tf.square(),  tf.pow(),   tf.sqrt(),   tf.matmul()

8. tf.data.Dataset.from_tensor_slices 1切分传入张量的第一维度,生成输入特征/标签对,构建数据集

data =tf.data.Dataset.from_tensor_slices(输入特征,标签)

9.with tf.GradientTape()  as tape:#with结构记录计算过程, gradient求出张量的梯度

          w = tf.Variable (tf.constant(3.0))

          loss = tf.poe(w,2)

grad = tape.gradient(loss,w)  #函数, 对谁求导

10. enumerate python自带函数,可遍历每个元素,组合为(索引,元素),常在for循环中使用

seq = ['one', 'two', 'three']

for i, element in enumerate(seq):

     print(i, element)

11. tf.one_hot()  独热编码,在分类问题中,常用独热编码做标签,标记类型为01,该函数将带转换数据转换为one_hot形式的数据输出    tf.one_hot(待转换数据,depth = n分类)

12. tf.softmax() 使输出符合概率分布

13.assign_sub 赋值操作,自减,更新参数的值并返回,调用assign_sub之前,先用tf.Variable定义变量w为可训练(可自更新)

w.assign_sub(1)  #w = w-1

14.tf.argmax(张量名,axis= 操作轴)  返回最大值索引

15.tf.where(条件语句,A, B)#真返回A, 假返回B

16. np.random.RandomState() 

rdm = np.random.RandomState(seed =1)  #seed设置为常数表明, 每次生成的随机数相同

a = rdm.rand() #产生一个随机数

b= rdm.rand(2,3)  #产生2行3列的随机数组

17. np.vstack() #将两个数组按垂直方向叠加,增加行

a = np.array ([1,2,3])

b = np.array([4,5,6])

c = np.vstack((a,b))   #c = [[1,2,3], [4,5,6])

18.np.mgrid[起点:结束值:步长,起点:结束值:步长]  生成格网数据

19.x.ravel  将x变量拉直成一维数组

20.np.c_[数组1, 数组2,.......]  使返回的间隔数值点配对

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值