1. 将numpy格式转为tensor类型 tf.convert_to_tensor(数据名, dtype = 数据类型)
2. 将tensor类型强制转换成其他类型 tf.cast(张量名,dtype =数据类型)
3. 计算张量维度上元素的最小值 tf.reduce_min(张量名)
计算张量维度上元素的最大值 tf.reduce_max(张量名)
4. axis 0表示列 1表示行 不指定表示所有
计算张量维度上元素的平均值 tf.reduce_mean(张量名, axis = 操作轴)
计算张量维度上元素的最大值 tf.reduce_sum(张量名, axis = 操作轴)
5.tf.variable()将变量标记为可训练,被标记的变量会在反向传播中记录梯度信息
6.四则运算: tf.add() , tf.subtract(), tf.multiply(), tf.divide()
7.其他运算:tf.square(), tf.pow(), tf.sqrt(), tf.matmul()
8. tf.data.Dataset.from_tensor_slices 1切分传入张量的第一维度,生成输入特征/标签对,构建数据集
data =tf.data.Dataset.from_tensor_slices(输入特征,标签)
9.with tf.GradientTape() as tape:#with结构记录计算过程, gradient求出张量的梯度
w = tf.Variable (tf.constant(3.0))
loss = tf.poe(w,2)
grad = tape.gradient(loss,w) #函数, 对谁求导
10. enumerate python自带函数,可遍历每个元素,组合为(索引,元素),常在for循环中使用
seq = ['one', 'two', 'three']
for i, element in enumerate(seq):
print(i, element)
11. tf.one_hot() 独热编码,在分类问题中,常用独热编码做标签,标记类型为01,该函数将带转换数据转换为one_hot形式的数据输出 tf.one_hot(待转换数据,depth = n分类)
12. tf.softmax() 使输出符合概率分布
13.assign_sub 赋值操作,自减,更新参数的值并返回,调用assign_sub之前,先用tf.Variable定义变量w为可训练(可自更新)
w.assign_sub(1) #w = w-1
14.tf.argmax(张量名,axis= 操作轴) 返回最大值索引
15.tf.where(条件语句,A, B)#真返回A, 假返回B
16. np.random.RandomState()
rdm = np.random.RandomState(seed =1) #seed设置为常数表明, 每次生成的随机数相同
a = rdm.rand() #产生一个随机数
b= rdm.rand(2,3) #产生2行3列的随机数组
17. np.vstack() #将两个数组按垂直方向叠加,增加行
a = np.array ([1,2,3])
b = np.array([4,5,6])
c = np.vstack((a,b)) #c = [[1,2,3], [4,5,6])
18.np.mgrid[起点:结束值:步长,起点:结束值:步长] 生成格网数据
19.x.ravel 将x变量拉直成一维数组
20.np.c_[数组1, 数组2,.......] 使返回的间隔数值点配对