【教材译读】离散微分几何:应用简介

新开设一个博客撰写栏目。为什么要做这件事?有两个原因:1. 学习国外的教材或者笔记撰写思路;2. 深化其中专业词汇和概念的认识和使用。

1 书籍简介

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION
离散微分几何:应用简介 (2025年1月版)
在这里插入图片描述
声明:书籍作者为Keenan Crane,所有权利及思想归原作者所有,如需引用,请按照相应规范进行引用。

目录

书籍主要包含下面内容

  • Introduction 引言
  • Combinatorial Surface 组合曲面
  • A Quick and Dirty Introduction to Differential Geometry 微分几何简要介绍
  • A Quick and Dirty Introduction to Exterior Calculus 外部微积分的简要介绍
  • Curvature of Discrete Surface 离散表面的曲率
  • The Laplacian 拉普拉斯
  • Surface Parameterization 表面参数化
  • Vector Field Decomposition and Design 向量场与设计
  • Conclusion 总结

本博客主要介绍引言部分和总结部分,其他章节将在其他博客中详细介绍。

Introduction

在这里插入图片描述

  • Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as large array of real-world examples and applications. It also provides a short survey of recent deevelopments in digital geometry processing and discrete differential geometry.
    我们的主要目标是展示如何从互补的计算和数学角度理解基本几何概念(如曲率)。双重视角丰富了双方的理解,并促进处理真实世界几何数据的实用算法的发展。在这个过程中,我们将重新审视微积分和线性代数的重要思想,重点强调直观和视觉理解,以补充更传统的正式代数处理。本课程提供必要的数学背景以及大量现实世界的例子和应用。它还概述了数字几何处理和离散微分几何的最新发展。

  • Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes’ theorem, simplicial homelogy, de Rham conformal mapping, finite element methods, and numerical linear algebra.
    主题包括:曲线和曲面、曲率、连接和平行传输【这个写法不太懂,有待更新】、外部代数、外部微积分、斯托克斯丁玲、单纯同调、德拉姆上同调、亥姆霍兹-霍奇分解、保角映射、有限元方法和数值线性代数。

  • Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, andcomputation of geodesic distance.
    应用包括:曲率近似、曲线曲面平滑、曲面参数化、矢量场设计和测地距离计算。

  • One goal of these notes is to provide an introduction to working real-world geometric data, expressed in the language of discrete exterior calculus (DEC). DEC is a simple, flexible and efficient framework which provides a unified platform for geometry processing. The notes provide essensial mathematical background as well as large array of real-world examples, with an emphasis on applications and implementation. The material should be accessible to anyone with some exposure to basic linear algebra and vector calculus, though most of the kay concepts are reviewed as needed.
    这些笔记的目的是介绍如何使用离散外微积分(DEC)语言来表达现实世界的几何数据。DEC是一个简单、灵活切高效的框架,它为几何处理提供了一个统一的平台。同时,也为几何处理提供了必要的数学背景以及大量现实世界的例子,重点是应用和实现。任何对基本线性代数和矢量微积分有一定了解的人都可以理解这些材料,尽管大多数关键概念都需要根据需要进行复习。

  • Coding exercises depend on a basic knowledge of either Javascript or C++, though knowledge of any programming language is likely sufficient: we do not make heavy use of paradigms like inheritance, templates, etc. The notes also provide guided written exercises that can be used to deepen understanding of the material.
    编码联系依赖于对JavaScript或C++的基本了解,尽管对任何编程语言的了解可能都足够:我们不会大量使用继承、模板等范式。这些笔记还提供指导性书面练习,可用于加深材料的理解。

  • Why use exterior calculus? There are, after all, many other ways to describe algorithms for mesh processing. One reason has to do with language: the exterior calculus of differential forms is, to a large degree, the modern language of differential geometry and mathematical physics. By learning to speak this language we can draw on a wealth of existing knowledge to develop new algorithms, and better understand current algorithms in terms of a well-developed theory. It also allows us to easily write down—and implement—many seemingly disparate algorithms in a single, unified framework.
    为什么使用外部微积分?毕竟,描述网格处理算法的方法还有很多。其中给一个原因与语言有关:微分形式的外部微积分在很大程度上是微分几何和数学物理的现代语言。通过学习这种语言,我们可以利用大量现有知识开发新算法,并从完善的理论角度更好地理解当前算法。它还使我们能够在一个统一的框架中轻松的写下并实现许多看似不同的算法。

  • In these notes, for instance, we’ll see how a large number of basic geometry processing tasks (smoothing, parameterization, vector field design, etc.) can be expressed in only a few lines of code, typically by solving a simple Poisson equation. There is another good reason for taking this approach, beyond simply “saying the same thing in a different way.” By first formulating algorithms in the smooth geometric setting, we can ensure that essential structures are subsequently preserved at the discrete level.
    例如,在这些笔记中,我们将看到如何仅用几行代码来表达大量基本几何处理任务(平滑、参数化、矢量场设计等),通常通过求解一个简单的泊松方程。采用这种方法还有一个好的理由,超越了“用不同的方式表达同样的事情”。通过首先在平滑几何设置中制定算法,可以确保在随后的离散级别中保留基本结构。

  • As one elementary example, consider the vertex depicted above. If we take the sum of the tip angles θ i \theta_{i} θi, we get a number that is (in general) different from 2 π 2\pi 2π. On any smooth surface, however, we expect this number to be exactly 2 π 2\pi 2π—said in a differential-geometric way: the tangent space at any point should consist of a “whole circle” of directions. Of course, if we consider finer and finer approximations of a smooth surface by a triangle mesh, the vertex will eventually flatten out and our angle sum will indeed approach 2 π 2\pi 2π as expected. But there is an attractive alternative even at the coarse level: we can redefine the meaning of “angle” so that it always yields the expected result.
    作为一个基本示例,考虑上面的描述的顶点。如果取顶角 θ i \theta_{i} θi的总和,可以得到一个不同于 2 π 2\pi 2π的数字。然而,在任何光滑的表面上,期望这个数字正好是 2 π 2\pi 2π, 用微分几何的方式来说:任何一点的期限空间都应该又“整个圆”的方向组成。当然,如果我们考虑用三角网格对光滑表面进行越来越精细的近似,顶点最终会变平,我们的角度总和的确会像预期的那样接近 2 π 2\pi 2π。然而,即便在粗略的层面上也有一个有吸引力的替代方案:可以重新定义“角度”的含义,以便它总是产生预期的结果。

  • In particular, let
    s : = 2 π ∑ i θ i s := \frac{2\pi}{\sum_{i}\theta_{i}} s:=iθi2π
    be the ratio between the angle sum 2 π 2\pi 2π that we anticipate in the smooth setting, and the Euclidean angle sum ∑ i θ i \sum_{i}\theta_{i} iθi exhibited by our finite mesh, and consider the augmented angles
    θ i ~ = s θ i . \tilde{\theta_{i}}=s\theta_{i}. θi~=sθi.
    In other words, we simply normalize the usual Euclidean angles such that they sum to exactly 2 π 2\pi 2π, no matter how coarse our mesh is:
    ∑ i θ i ~ = s ∑ i θ i = 2 π . \sum_{i}\tilde{\theta_{i}}=s\sum_{i}\theta_{i} = 2\pi. iθi~=siθi=2π.
    From here we can carry out all the rest of our calculations as usual, using the augmented or “discrete” angles θ i ~ \tilde{\theta_{i}} θi~ rather than the usual Euclidean angles θ i \theta_{i} θi. Conceptually, we can imagine that each vertex has been smoothed out slightly, effectively pushing the curvature of our surface into otherwise flat triangles. This particular convention may not always (or even often) be useful, but in problems where the tangent space structure of a surface is critical it leads to highly effective algorithms for mesh processing (see for example [KCPS13, SC18]).
    具体来说,$s := \frac{2\pi}{\sum_{i}\theta_{i}} $是在平滑设置中预期的角度和 2 π 2\pi 2π与有限网格所展示的欧几里得角度和 ∑ i θ i \sum_{i}\theta_{i} iθi之间的比率,并考虑增强角度
    θ i ~ = s θ i 。 \tilde{\theta_{i}}=s\theta_{i}。 θi~=sθi
    换句话说,我们只是将通常的欧几里得角度标准化,使得它们的总和恰好为 2 π 2\pi 2π,无论我们的网格有多粗糙:
    ∑ i θ i ~ = s ∑ i θ i = 2 π 。 \sum_{i}\tilde{\theta_{i}}=s\sum_{i}\theta_{i} = 2\pi。 iθi~=siθi=2π
    从这里我们可以像往常一样进行所有其余的计算,使用增强或“离散”角度 θ i ~ \tilde{\theta_{i}} θi~而不是通常的欧几里得角 θ i \theta_{i} θi。从概念上讲,我们可以想象每个顶点都经过了轻微的平滑,从而有效地将表面的曲率推入原本平坦的三角形中。这种特殊的管理可能并不总是有用,但在曲面的期限空间结构至关重要的问题中,它会导致高效的网格处理算法。

  • This message is one theme we’ll encounter frequently in these notes: there is no one “right” way to discretize a given geometric quantity, but rather many different ways, each suited to a particular purpose. The hope, then, is that one can discretize a whole theory such that all the pieces fit together nicely. DEC is one such theory, which has proven to be highly successful at preserving the
    homological structure of a surface, as we’ll discuss in Chapter 8.
    这个信息是我们在这些笔记中经常遇到的一个主题:没有一种“正确”的方法来离散化给定的几何量,而是有许多不同的方法,每种方法都适合特定的目的。因此,希望人们能够离散化整个理论,使所有部分都能很好地组合在一起。DEC 就是这样一种理论,它已被证明在保留表面的同源结构方面非常成功,我们将在第 8 章中讨论这一点。

  • Our goal throughout these notes was to describe every concept in terms of a concrete geometric
    picture—we have tried as much as possible to avoid abstract algebraic arguments. Likewise, to get the most out of the written exercises one should try to make an intuitive geometric argument first, and only later fill in the formal details.
    在整个笔记中,我们目标是通过具体的几何图形来阐述每个概念——尽可能避免抽象的代数论证。同样,为了从书面练习中获得最大收获,大家应该首先尝试进行直观的几何论证,然后再进行正式的细节描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值