自创深度学习算法,预测股票上涨

文章介绍了基于股票历史交易数据的预测模型构建过程,通过深度学习分析过去五年内价格上涨的模式,选择特定条件的股票进行标注训练,然后用模型预测未来可能的牛股,实际操作中显示出优于沪深300指数的收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我看来,投资都是人性的重复,基于此思想,通过学习股票历史上涨的信息,就可以预测以后类似的股票。

首先,导入股票连续五年的历史交易信息,包括价格、交易量等,再归一化,使用统计学压缩。通过搜索历史股票上涨的信息,选择20个交易日内涨幅超过40%、40个交易日涨幅超过80%、最低点的股票,标注为1,其余标注为0.

将连续两年的交易数据标注后,压入深度学习模型,记录达到要求的股票,得到股票预测模型。

下载每日交易数据,通过股票预测模型计算,得到标的股票,第二天买入。

经过近半年的实盘测试,收益良好,跑赢沪深300指数,预测了不少牛股。

欢迎大咖批评指正。

深度学习股票预测中的应用通常涉及时间序列分析和机器学习技术,如循环神经网络(RNNs,特别是LSTM或GRU)或卷积神经网络(CNN)。下面是一个简化的概述: ```python # 导入必要的库 import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM # 加载股票数据(假设是CSV文件) data = pd.read_csv('stock_data.csv') # 数据预处理 data['Date'] = pd.to_datetime(data['Date']) data.set_index('Date', inplace=True) data = data.dropna() # 删除缺失值 train_size = int(len(data) * 0.8) # 划分训练集和测试集 train, test = data[:train_size], data[train_size:] # 准备输入和输出数据 (这里假定收盘价是目标变量) inputs = train[:-1].values.reshape(-1, 1, data.shape[1]) outputs = train[1:].values # 构建模型 model = Sequential() model.add(LSTM(units=50, input_shape=(inputs.shape[1], inputs.shape[2]))) model.add(Dense(1)) # 输出层只有一个节点,对应于股票价格的变化 # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') # 训练模型 model.fit(inputs, outputs, epochs=50, batch_size=32) # 预测 predictions = model.predict(test[:-1]) # 后续可以评估预测效果,并将结果用于交易决策,但这部分需要结合金融知识和策略 ``` 注意:这只是一个基本示例,实际应用中还需要考虑更多因素,比如特征工程、超参数调整、回测和风险管理等。此外,股票市场存在许多不确定性和噪声,因此深度学习预测并不保证总是准确。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值