NIPS-2011《Sparse Manifold Clustering and Embedding》


推荐一个机器学习前沿公众号,第一时间获取最有价值的前沿机器学习文章。

在这里插入图片描述


核心思想

论文提出了一种名为Sparse Manifold Clustering and Embedding (SMCE)的算法,旨在同时对高维数据进行聚类降维,这些数据假设分布在多个非线性流形上。其核心思想基于以下假设:对于每个数据点,其所属流形上的局部邻域中的点近似位于一个低维仿射子空间内。SMCE通过稀疏优化自动选择每个数据点的邻居及其权重,从而构建一个稀疏的相似性图,用于后续的谱聚类和降维。这种方法避免了传统方法中固定邻域大小或手动选择邻居的局限性,能够处理流形间距离较近、非均匀采样或具有孔洞等复杂情况,同时估计流形的内在维度。

具体而言,SMCE的关键创新在于:

  1. 稀疏表示:利用稀疏优化选择同一流形上的邻居,基于这些邻居点张成的低维仿射子空间逼近数据点。
  2. 联合优化:同时确定邻居和权重,而非传统方法先构建邻域图再计算权重。
  3. 流形维度估计:通过稀疏解的非零元素数量估计流形的内在维度。

目标函数

SMCE的目标函数基于稀疏优化,旨在为每个数据点 x i x_i xi选择一组稀疏的邻居点,这些点张成的低维仿射子空间能够近似通过 x i x_i xi。论文提出了两种等价的优化形式,通过加权 ℓ 1 \ell_1 1范数促进稀疏性和仿射重构误差的平衡。

优化形式1(带约束的加权 ℓ 1 \ell_1 1优化)

目标函数为:
min ⁡ ∥ Q i c i ∥ 1 subject to ∥ X i c i ∥ 2 ≤ ε , 1 ⊤ c i = 1 \min \| Q_i c_i \|_1 \quad \text{subject to} \quad \| X_i c_i \|_2 \leq \varepsilon, \quad 1^\top c_i = 1 minQici1subject toXici2ε,1ci=1
其中:

  • c i c_i ci:表示数据点 x i x_i xi的稀疏系数向量,非零元素对应选择的邻居点。
  • X i = [ x 1 − x i ∥ x 1 − x i ∥ 2 , … , x N − x i ∥ x N − x i ∥ 2 ] ∈ R D × ( N − 1 ) X_i = \left[ \frac{x_1 - x_i}{\|x_1 - x_i\|_2}, \dots, \frac{x_N - x_i}{\|x_N - x_i\|_2} \right] \in \mathbb{R}^{D \times (N-1)} Xi=[x1xi2x1xi,,xNxi2xNxi]RD×(N1):归一化的邻居向量矩阵,确保选择邻居时不受距离尺度影响。
  • Q i Q_i Qi:对角矩阵,其对角元素为 ∥ x j − x i ∥ 2 ∑ t ≠ i ∥ x t − x i ∥ 2 \frac{\|x_j - x_i\|_2}{\sum_{t \neq i} \|x_t - x_i\|_2} t=ixtxi2xjxi2,用于偏向选择靠近 x i x_i xi的点。
  • ε \varepsilon ε:控制仿射重构误差的容忍度。
  • 1 ⊤ c i = 1 1^\top c_i = 1 1ci=1:仿射约束,确保 c i c_i ci表示仿射组合。
优化形式2(Lasso形式)

通过拉格朗日乘子法,上述问题可转化为无约束形式:
min ⁡ λ ∥ Q i c i ∥ 1 + 1 2 ∥ X i c i ∥ 2 2 subject to 1 ⊤ c i = 1 \min \lambda \| Q_i c_i \|_1 + \frac{1}{2} \| X_i c_i \|_2^2 \quad \text{subject to} \quad 1^\top c_i = 1 minλQici1+21Xici22subject to1ci=1
其中:

  • λ \lambda λ:权衡稀疏性( ℓ 1 \ell_1 1项)和重构误差( ℓ 2 \ell_2 2项)的参数。
  • 其他符号与优化形式1相同。

两种形式的核心目标是:通过最小化加权 ℓ 1 \ell_1 1范数促进 c i c_i ci的稀疏性,同时保证选择的邻居点能够张成一个低维仿射子空间,逼近 x i x_i xi

目标函数的优化过程

优化过程主要基于求解上述稀疏优化问题,以下是具体步骤:

  1. 数据预处理

    • 对于每个数据点 x i x_i xi,构造归一化矩阵 X i X_i Xi,其中每个列向量为 x j − x i ∥ x j − x i ∥ 2 \frac{x_j - x_i}{\|x_j - x_i\|_2} xjxi2xjxi,以消除距离尺度的影响。
    • 构建加权矩阵 Q i Q_i Qi,其对角元素根据 x j x_j xj x i x_i xi的距离定义,偏向选择近邻。
  2. 稀疏优化求解

    • 对于优化形式1,使用凸优化工具(如线性规划或内点法)求解带约束的加权 ℓ 1 \ell_1 1优化问题。
    • 对于优化形式2,转化为类似Lasso的优化问题,可通过现成的稀疏优化算法(如坐标下降法或ADMM)求解。
    • 优化结果为稀疏向量 c i c_i ci,其非零元素对应 x i x_i xi在同一流形上的邻居点。
  3. 权重计算

    • 根据 c i c_i ci,计算权重向量 w i w_i wi,其中 w i j = c i j / ∥ x j − x i ∥ 2 ∑ t ≠ i c i t / ∥ x t − x i ∥ 2 w_{ij} = \frac{c_{ij} / \|x_j - x_i\|_2}{\sum_{t \neq i} c_{it} / \|x_t - x_i\|_2} wij=t=icit/∥xtxi2cij/∥xjxi2 j ≠ i j \neq i j=i), w i i = 0 w_{ii} = 0 wii=0
    • 权重 w i j w_{ij} wij反映邻居点 x j x_j xj x i x_i xi的距离关系,用于构建相似性图。
  4. 相似性图构建与谱分析

    • 构建相似性图 G \mathcal{G} G,边权重为 ∣ w i j ∣ |w_{ij}| wij,由于 c i c_i ci的稀疏性,图中每个节点仅连接到少量邻居。
    • 构造相似性矩阵 W = [ ∣ w 1 ∣ , … , ∣ w N ∣ ] W = [|w_1|, \dots, |w_N|] W=[w1,,wN],理想情况下为块对角形式,每个块对应一个流形。
    • 聚类:对 W W W应用谱聚类,基于Laplacian矩阵的特征值分解确定流形数量和聚类结果。
    • 降维:对每个聚类的子矩阵 W [ l ] W[l] W[l],计算归一化Laplacian矩阵的特征向量,得到低维嵌入。
  5. 维度估计

    • 对于每个聚类 l l l,计算中值稀疏系数向量 m s c ( l ) = median { c s , i } i ∈ Ω l msc^{(l)} = \text{median} \{ c_{s,i} \}_{i \in \Omega_l} msc(l)=median{cs,i}iΩl,其中 c s , i c_{s,i} cs,i为排序后的 ∣ c i ∣ |c_i| ci
    • m s c ( l ) msc^{(l)} msc(l)中非零元素数量(或高幅度元素数量)估计流形 l l l的内在维度 d l + 1 d_l + 1 dl+1

主要贡献点

  1. 统一的聚类与降维框架

    • SMCE首次提出通过稀疏优化同时实现多流形数据的聚类和降维,避免了传统方法分步处理的复杂性。
    • 通过单一优化过程自动选择邻居和权重,克服了固定邻域大小的局限性。
  2. 稀疏优化的几何假设

    • 提出关键假设:同一流形上的邻居点张成的低维仿射子空间能够逼近数据点,利用稀疏优化实现邻居选择。
    • 该假设在流形间距离较近、非均匀采样或流形具有孔洞等复杂场景下依然有效。
  3. 流形维度估计

    • 通过稀疏解的非零元素数量,SMCE能够估计每个流形的内在维度,且允许不同数据点具有不同邻域大小,适应局部流形结构的异质性。
  4. 鲁棒性和稳定性

    • 实验表明,SMCE在合成数据(如穿孔球面、双三叶结)和真实数据(如Yale B人脸数据集、MNIST数字数据集)上均表现出色,尤其在流形靠近或采样不均匀的情况下优于传统方法(如LLE、LEM)。
    • 算法对参数 λ \lambda λ的敏感性较低,在宽范围内(如 λ ∈ [ 1 , 200 ] \lambda \in [1, 200] λ[1,200])表现稳定。
  5. 高效实现

    • 稀疏解使得相似性矩阵 W W W高度稀疏,便于存储和计算。
    • 通过限制优化中的邻居数量(如 L = N / 10 L = N/10 L=N/10),降低计算复杂度。

总结

SMCE通过稀疏优化实现了多流形数据的联合聚类和降维,其核心在于利用局部低维仿射子空间的几何性质自动选择邻居点。目标函数通过加权 ℓ 1 \ell_1 1范数和仿射重构误差的平衡,优化稀疏系数向量,进而构建稀疏相似性图用于谱聚类和降维。优化过程结合凸优化技术和谱分析,高效且鲁棒。主要贡献包括统一的算法框架、流形维度估计能力以及在复杂场景下的优越性能,为非线性流形学习提供了新的视角和工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Christo3

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值