只有你一个人,怎么自学人工智能,如果你没有团队,没有资源,没有理工背景,也不想去参加各种线下课,但你已经意识到2025或者以后AI的重要性,并愿意为之付出努力,那怎样才能把这样一个听起来既熟悉又陌生的学科,系统地从0到1自学起来,并且在3-4个月能用它真正解决你的实际问题,找到相关的高薪收入或者是提升你的收入。
这篇文章话会比较长,术语也比较多,但都是我在这个行业9年来总结的方法论,如果你想少走弯路,就耐心看完这次的笔记,能理解多少都是赚到。
基础知识点1:
首先是基础知识点,我们把基础知识点分为数学、Python,还要一定的英语能力,这个我们都知道肯定要会的,那我们要不要学得很熟练呢,数学学完估计你也没时间继续学下去了,很多人一搜入门人工智能,就是要你先要把数学学好,比如高数、微积分、线性代数、概率论、复变函数、数值计算等等,不然后面看不懂什么的,其实不需要的,如果你现在的任务是入门,而不是去做一些开创性的研究,这些知识点并不完全有必要都弄懂的,我的建议是先从线性代数开始,里面掌握向量、矩阵、特征值等,快速的去过一遍,还有就是高数,你只需要掌握导数、微分、积分的概念,梯度的概念,概率论和泰勒展开公式是干嘛用的,就可以了,时间安排的话一周左右把概念弄懂就可以了,如果你非要做笔记,你就做一个导图,方便自己后面在用的过程中,不会的再回来查一下,边用边学才是最快的。
基础知识点2:
第二个基础知识点是Python,面向对象编程,这个是我们后面机器学习以及深度学习数据处理实现模型,包括一些验证模型的主力语言,这么重要的部分,我们是不是要把他精通呢,也不需要的,你只要有一定的语言基础就可以了,在B站的话有很多的Python教程,也可以去看看廖雪峰老师的Python教程,后面一定要自己上手去实战,光看肯定不行的,越学越懵逼,时间安排的话,如果你是零基础,没有接触过,那要花两周的时间,如果你本身就有编程基础,转行过来的,一周时间完全足够了。
机器学习:
前面基础知识都过了一遍,现在我们来看机器学习,其实我是想把机器学习也放在基础知识里面的,因为现在AI什么火,深度学习火,机器学习更多的是给我们打基础,入门AI的知识点,让我们更快地过度到深度学习里面来,这里我主要给大家做一些精简,我们没有必要每个算法都学,有些现在已经不太用得到,包括面试,包括工作,一些不太远用得到的算法和模型适当的进行一些舍弃,我会把我个人认为必须要知道的,然后必须要用到比较关键的一些东西,可学可不学的我这里就不提了
- 第一个是线性模型,这是一定要会的,比如有线性回归、逻辑回归、还有SVM,主要是这三个,一般面试还是线性回归逻辑回归为主,这两个要学到什么程度呢?一定是要所有的技术细节、原理你都会,公式能在纸上进行推导,面试官问你这两个是怎么来的,你能当场给面试官推算一遍。
- 第二个是贝叶斯定理,它本身其实并不重要,学起来也不复杂,主要是很多模型,你只有理解贝叶斯之后,你才能知道它这样设计的原理是什么,比如你做一个文本分类,它算法的核心原理,最后都是一个概率,最后还是会落在贝叶斯定理上来,所以说它是一个很基础的东西,虽然用不上,但是要懂原理。
- 然后是树模型,有决策树、随机森林、GBTD、XGBoost等很多,树模型本身也是一个复杂的概念,不需要每个都会,主要是决策树、随机森林、GBTD这三个了解就OK了。
- 还有就是机器学习的基本概念,比如说梯度下降、损失函数、评估指标、学习率等等,如果说以后你要进阶算法岗,那么要知道里面所有的细节以及基本的原理,有的时候我们要根据业务或者说是自己的模型,要自己来定义损失函数,还有评估指标,什么时候我们用AUC,什么时候我们用准确率,准确率召回率意味着什么,准确率和精确率又有什么区别,这也是我面试和平常工作中经常用到的,所以说还是蛮重要的。
深度学习
然后我们来说深度学习,深度学习一定不要想复杂了,还是比较简单的,但是要当做重点来学。
深度学习里面的神经网络、卷积网络、递归网络、Transformer,我希望大家能把里面的细节都掌握,卷积有哪些参数,池化有哪些参数,他们的优势是什么,每一步细节是怎么实现的,我们要非常详细的去了解,包括Transformer,每一步代码怎么实现的,把这些基本功打扎实了,后续我们学什么就都快了。
再一个就是学的时候要结合着框架和项目来学,框架学习的话我建议大家去学Pytorch这个框架,有的兄弟会说为什么不学tensorflow,对于新手来说Pytorch会比较容易上手一点,我自己最近也都是在用Pytorch,很久没用tensorflow了,tensorflow写起来确实比较麻烦,如果你们想去学tensorflow也没关系,这两个框架转换起来,也不是很复杂,框架只是一个工具,模型的效果,还是要看我们自己的设计能力和对问题的理解能力,学习方法的话我们可以先把他基础语法都熟悉一下,比如它怎么创建一个矩阵,怎么对这些矩阵做基本操作,然后我们找unite,在pytorch当中把它debug一遍,看看它是怎么做初始化变量的,怎么做计算的,怎么设计这些层的,然后上升一下难度,把VIT,YOLO这两个项目学习一下,就可以理解到pytoch当中的高级特性,不仅把pytorch学会了,还能把当下主流的算法也都熟悉了一遍。
方向选择
最后就是我们的方向选择了,你要想清楚后面自己的方向究竟是什么,首先什么提示词之类的,就别说了,估计找工作难得一批,就说说我觉得还不错的方向选择吧
- 我们先来说说数据挖掘、数据分析,这个的话就业面广,现在跟工业、制造业都能结合在一起,用人需求量大,每个行业都需要,门槛也相对较低,会个SQL,会个数据库、会Python和机器学习就可以去面试了,但是你想拿比较高的offer也是不太可能,
- 第二个的话就是算法方向,是电商等领域的推荐、搜索,还是自然语言处理NLP、还是计算机视觉CV、还是其他的什么人工智能,比如AI算法工程师,不同领域的技术和能力要求,其实完全不一样的,比如之前做计算机视觉的,突然换成做推荐搜索,会发现完全不一样,用到的模型和技术、方法论都天差地别,所以说我们在准备入行的时候就要想清楚,我到底是冲着哪个领域去的,这个薪资高,入门门槛高,可发展性高,以前只有大厂做,现在每个行业都在做,电商、直播等,就业面也很广,大模型现在的热度就不用说了,很多学AI的都是奔着算法去的,
- 还有一个方向就是25年比较火的Agent,尤其是多智能体协作,比如说让智能体帮我们干活,结合企业做一些落地的应用,科研就不用说了,今年顶会顶刊清一色的在用Agent去做实验做东西。
你如果想不清楚这个问题,那你去学习是没有目标的,也不知道学什么会有效果,方向选择是要比之前学习重要很多的东西
有了方向之后,我们可以看一些论文了,深度学习本身是很基础的,说白了就是对框架的使用,比如卷积神经网络你到底会不会写,到底怎么用,怎么调它的库,比如说LSTM,你怎么用PyTorch去实现,这些都是比较浅的东西,学会了不代表我们就会深度学习了,就是一名算法工程师了,因为在不同的领域,会有很多新的技术,我们必须要去看前沿的论文才会了解到
论文我们不用担心看不懂,很多大牛会去写论文的一个分析,其实看一些中文的博客,就能基本上get到原文的意思,还有就是github,里面有很多论文的复现,有详细的代码,也是可以帮助我们去理解论文。
两个月入门到进阶推荐资源:
《机器学习+深度学习》和人工智能60G入门学习zi料包
【1.超详细的人工智能学习大纲】:一个月精心整理,快速理清学习思路!
【2.基础知识】:Python基础+高数基础,打好基础!
【3.机器学习入门】:机器学习十大算法经典算法详解,并且整理好哪些要重点学,哪些可以放弃的知识点!
【4.深度学习入门】:神经网络基础(CNN+RNN+GAN)包括pytorch框架+Transformer详解!
【5.方向选择】:数据、CV、NLP、大模型等项目实战
总结:
总结一下,人工智能入门不是非常困难的事情,我们要学的东西还是比较明确的,对于很多新手而言难得是不知道怎么获取一份这样的信息,不知道要学什么,而不是去网上看了很多教程,学了很多的东西,到头来却没有派上用场,我还挺遗憾的,我很希望你们都能做出正确的努力,达到正确的效果,实现你们想要事项的事情,对于我们来说,最最重要的还是时间,学习其实不难,难得是怎么快速出结果。