由于人工智能的爆炸式增长,我们看到了解决各种问题的新技术的爆发。虽然这是一个净积极因素,但这会导致人工智能团队在如何最好地解决问题方面存在很多困惑。
这篇文章的灵感来自我与客户的许多讨论。我最常遇到的问题之一是我如何选择正确的工具来完成这项工作。今天,我将讨论我在提供解决方案时在传统人工智能、监督机器学习和深度学习之间进行选择的框架。虽然这不是一门精确的科学,但一些一般的启发式方法可以很好地作为指南。这是我对各种技术的评价——
- 传统 AI - 最安全、最易理解和最高性能。然而,传统人工智能的良好实现需要我们定义系统背后的规则,这使得其他两种技术蓬勃发展的许多用例变得不可行。
- 监督式机器学习- 黑白 AI 和深度学习的中间道路。当我们对系统的运作有一定的了解,但无法为它创建具体的、定义明确的规则时,这很好。
- 深度学习- 由于不透明且成本高昂,太多的团队急于使用深度学习,而其他解决方案就足够了。然而,对于非常非结构化的数据,识别规则和关系非常困难(甚至不可能)。在这里,深度学习可能是唯一的出路。
其中一个并不比另一个好。它们也不是相互排斥的。即使在现代 AI 管道中,正则表达式、概率分布和聚类等传统 AI 技术也被用于数据提取、特征工程和管道监控,从而能够有效部署机器学习和深度学习。
人工智能、机器学习和深度学习有什么区别
实际上,DL是ML的一个子类,ML是AI的一个子领域。人工智能本身就是一个巨大的领域,包含从if语句集合到复杂的进化算法和自组织系统的所有内容。但对于本文,以下是我们如何区分这些技术。