FCCLIP!最强视觉分割大模型!秒杀SAM系列!少样本视觉分割神器!

文章介绍了FC-CLIP模型在解决少样本视觉检测和分割任务中的优势,特别是在数据不足情况下,其基于CNN的结构使得模型在大尺度输入和部署效率上优于Transformer。FC-CLIP在ADE20k上的表现超越了其他大模型,且在业务数据集上展现了显著效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概要

传统的检测网络和分割网络, 在开源数据集上效果很好,依赖于大量的有label的数据集。然而,实际视觉项目中,数据集不足数据集难获取是一种常态,少样本的视觉检测分割方法显得尤为重要。 视觉大模型可以很好的解决这一问题,视觉大模型可以用很少的数据量达到很好的效果。 在分割任务方面,FC-CLIP模型相比SAM系列有明显的性能及效果优势,作者详细介绍一下FC-CLIP模型。
Convolutions Die Hard: Open-Vocabulary Segmentation with Single Frozen Convolutional CLIP
FC-CLIP论文链接:https://arxiv.org/abs/2308.02487
FC-CLIP官方github代码:https://github.com/bytedance/fc-clip

整体架构流程

首先看一下网络结构图
在这里插入图片描述

  1. 论文给出的网络结构图是训练和推理合在一起的网络结构图。
    训练的时候out-vocab branch是不参与的, 只有in-vocab branch参与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值