DeepSeek——DeepSeek模型部署实战

摘要

文章主要介绍了DeepSeek大模型的本地部署方法、使用方式以及API接入相关内容。首先指出可通过下载Ollama来部署DeepSeek-R1模型,并给出了模型不同参数版本及存储信息。接着说明了如何通过Chatbox官网下载并接入DeepSeek API,以及如何接入本地部署模型。最后提及了DeepSeek官网使用和集成工具使用相关内容。

1. DeepSeek大模型本地部署

1.1. 下载Ollama(Ollama

点击DeepSeek-R1的链接可以看到有关deepseek-r1的详细介绍:

1.2. 部署deepseek-r1模型

目前deepseek-r1模型大小提供了7个选择:1.5b、7b、8b、14b、32b、70b、671b。

你可以根据你的硬件情况选择,通常模型大小(参数量)越大,模型的理解和生成能力越强,但也会消耗更多的计算资源。点击Download按钮下载符合自己平台的Ollama:

我这里选择macOS,点击下载。下载文件大小不到200M,文件名为:Ollama-darwin.zip。解压后打开Ollama应用程序,提示:

1.3. 使用deepseek-r1模型

按照提示,打开终端,使用 Command + Space 快捷键调用 terminal

这里Ollama默认给出的例子是下载/运行llama3.2大模型,我们这里不使用这个llama3.2模型,直接下载/运行deepseek,参数选择最小的1.5b,在终端窗口运行下面命令:

ollama run deepseek-r1:1.5b

jingyuzhao@jingyuzhao-mac ~ % ollama run deepseek-r1:1.5b
pulling manifest 
pulling manifest 
pulling manifest 
pulling manifest 
pulling manifest 
pulling manifest 
pulling aabd4debf0c8... 100% ▕████████████████████████████████████████▏ 1.1 GB                         
pulling 369ca498f347... 100% ▕████████████████████████████████████████▏  387 B                         
pulling 6e4c38e1172f... 100% ▕████████████████████████████████████████▏ 1.1 KB                         
pulling f4d24e9138dd... 100% ▕████████████████████████████████████████▏  148 B                         
pulling a85fe2a2e58e... 100% ▕████████████████████████████████████████▏  487 B                         
verifying sha256 digest 
writing manifest 
success 
>>> Send a message (/? for help)

这里就直接可以和DeepSeek对话了:

>>> Hi! Who are you?
<think>

</think>

Hi! I'm DeepSeek-R1, an artificial intelligence assistant created by DeepSeek. I'm at your service 
and would be delighted to assist you with any inquiries or tasks you may have.

>>> 你好,你是谁?
<think>

</think>

你好!我是DeepSeek-R1,一个由深度求索公司开发的智能助手。我擅长通过思考来帮您解答复杂的数学,代码和
逻辑推理等理工类问题。 Feel free to ask me anything you'd like me to know! 

>>> Send a message (/? for help)

2. DeepSeek大模型API接入

2.1. 下载Chatbox官方网站(Chatbox AI: Your AI Copilot, Best AI Client on any device, Free Download

我这里还是Intel-based的MAC,下载的Chatbox-1.9.7.dmg,大小100M多点,点击安装,按下面提示拖到Applications内:

2.2. Chatbox接入DeepSeek API

2.3. Chatbox接入DeepSeek本地部署模型

实际上,若选择这个你本地的DeepSeek模型。实际正确应该选择OLLAMA API,然后就可以看到我们上一步安装好的deepseek-r1:1.5b

配置好DeepSeek本地模型之后,就可以实现在断网情况下自由问答了,比如,此刻我正在写这篇文章,于是就问他帮我想名字:

我正在写一篇文章,手动部署DeepSeek本地模型在。请你帮我重新生成10个吸引眼球的标题供我选择。

3. DeepSeek大模型使用

3.1. DeepSeek官网使用(DeepSeek

3.2. DeepSeek集成工具使用(https://poe.com/

博文参考

### 如何在本地环境中部署 DeepSeek 模型 #### 准备工作 为了成功完成 DeepSeek 模型的本地部署,需先准备好必要的软件工具和环境配置。对于不同版本的 DeepSeek 模型,具体的准备工作可能有所不同。 针对 DeepSeek 2.5 的部署,建议按照官方提供的实战教程进行操作[^1]。而对于基于 KubeRay 和 vLLM 部署DeepSeek-V3,则需要遵循特定的技术路径来设置环境并实现模型的私有化部署[^2]。至于较早版本如 DeepSeek-R1 1.5B,在 Windows 平台上可以通过安装 ollama 工具快速启动模型服务[^3]。 #### 安装依赖项 无论是哪个版本的 DeepSeek 模型,通常都需要预先安装一些基础组件或库文件作为支持。这一步骤的具体内容取决于所选平台以及目标硬件架构等因素的影响。例如: - 对于 Linux 或 MacOS 用户来说,可能会涉及到 Python 环境、CUDA/GPU 加速包等; - 如果是在 Kubernetes 上运行(比如使用 KubeRay),则还需要准备相应的集群资源和服务定义文件; #### 下载与初始化模型DeepSeek-R1 1.5B 版本为例,用户可以在命令行界面执行如下指令来进行模型下载及初步加载: ```powershell # 打开 PowerShell 终端窗口 ollama install ollama run deepseek-r1:1.5b ``` 上述命令会自动处理模型权重文件的获取过程,并将其缓存至本地存储位置以便后续调用。 #### 启动服务接口 一旦模型被正确加载之后,下一步便是开启对外的服务接口供应用程序连接请求。具体做法依据实际应用场景而定——可以直接利用内置 HTTP API 提供 RESTful 接口访问方式,也可以集成到更复杂的流水线作业当中去。 对于某些高级特性(如分布式推理能力的支持),可参照相关文档说明进一步优化配置参数以获得更好的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

庄小焱

我将坚持分享更多知识

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值