逻辑证明的基础除了定义,还有公理--逻辑与算法十九

本文探讨了逻辑证明的基础,强调了定义和公理的重要性。通过对莱布尼兹的公理1(逻辑加的交换律)和公理2(逻辑加的吸收律)的解析,阐述了逻辑加与算术加的区别,并在解释公理2时引入了量度和次序的概念。文章指出在使用逻辑加构建判断时需要谨慎处理量度问题。
摘要由CSDN通过智能技术生成

逻辑证明的基础除了定义,还有公理–逻辑与算法十九

引言

萊布尼兹的片断19和片断20的最后注釋是关于公理的,先给出公理1和公理2的基本内容,然后我们来看莱布尼兹如何看待它的逻辑加所依据的这两个公理。

公理1:B⊕N=N⊕B。逻辑加的交换律

公理2:A⊕A=A。逻辑加的吸收律

一个演绎证明的基础首先是定义,除了定义之外,那就是公理了。莱布尼兹在其晚年发表的一篇论文《数学的形而上学基础》(写于1716年)中,使用三段论,证明一个几乎属于常识的命题,证明之后,接之就讨论了何为证明的基础。

可以用三段论推理来证明“B小于A”这个命题,如果我们有以下两个前提的话。

大前提:所有等于A的一部分的东西,都小于A

小前提:B和A的一部分相等

由此可得结论:

所以,B小于A。

从这个推理过程可以看到些什么呢?莱布尼兹接着说:

我们看到所有的证明都可以归纳为两个无需证明的基础:对于观念的定义和对于原初的等同的命题。例如:B和A是等同的,每一个元素等于它自身,以及无数的其它同类的命题。(《莱布尼兹自然哲学著作选》第55页)

显然,所有那些类似于等同命题的陈述,它们不是定义,而是公理,并不需要事先得到你的证明。作为推理前提的命题,上述三段论的大前提,实际上就是“整体大于部分”这个公理。而这个公理则来自欧几里得的《几何原本》,那就是作为欧几里得平面几何基础的公理5。(《几何原本》李采菊译本第3页)

有了这个证明基础的简单说明,我们来看莱布尼兹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值