逻辑证明的基础除了定义,还有公理–逻辑与算法十九
引言
萊布尼兹的片断19和片断20的最后注釋是关于公理的,先给出公理1和公理2的基本内容,然后我们来看莱布尼兹如何看待它的逻辑加所依据的这两个公理。
公理1:B⊕N=N⊕B。逻辑加的交换律
公理2:A⊕A=A。逻辑加的吸收律
一个演绎证明的基础首先是定义,除了定义之外,那就是公理了。莱布尼兹在其晚年发表的一篇论文《数学的形而上学基础》(写于1716年)中,使用三段论,证明一个几乎属于常识的命题,证明之后,接之就讨论了何为证明的基础。
可以用三段论推理来证明“B小于A”这个命题,如果我们有以下两个前提的话。
大前提:所有等于A的一部分的东西,都小于A
小前提:B和A的一部分相等
由此可得结论:
所以,B小于A。
从这个推理过程可以看到些什么呢?莱布尼兹接着说:
我们看到所有的证明都可以归纳为两个无需证明的基础:对于观念的定义和对于原初的等同的命题。例如:B和A是等同的,每一个元素等于它自身,以及无数的其它同类的命题。(《莱布尼兹自然哲学著作选》第55页)
显然,所有那些类似于等同命题的陈述,它们不是定义,而是公理,并不需要事先得到你的证明。作为推理前提的命题,上述三段论的大前提,实际上就是“整体大于部分”这个公理。而这个公理则来自欧几里得的《几何原本》,那就是作为欧几里得平面几何基础的公理5。(《几何原本》李采菊译本第3页)
有了这个证明基础的简单说明,我们来看莱布尼兹