NVLink A100GPU 安装 Fabric-manager,解决GPU无法正常使用问题

背景介绍

NVIDIA NVLink A100 GPU卡,需额外安装与驱动版本对应的 nvidia-fabricmanager 服务使 GPU 卡间能够互联通过NVSwitch互联,如果仅安装NVIDIA GPU 驱动程序,会导致GPU不能正常使用。详细的NVIDIA-fabricmanager服务安装步骤如下

本文安装方法分为CentOS7.X系统和Ubuntu系统

操作步骤

其中version后面的版本要根据已安装的GPU驱动版本保持一致,否则会出现不匹配问题,GPU驱动版本可通过nvidia-smi查看

nvidia-fabricmanager安装

一、CentOS 7.X

version=470.103.01
yum -y install yum-utils
yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo
yum install -y nvidia-fabric-manager-${version}-1

二、Ubuntu

version=470.103.01
main_version=$(echo $version | awk -F '.' '{print $1}')
apt-get update
apt-get -y install nvidia-fabricmanager-${main_version}=${version}-*

启动nvidia-fabricmanager服务

启动nvidia-fabricmanager

<think>嗯,用户想了解Datacenter GPU Manager(DGM)的使用方法。首先,我得确认自己对这个工具有足够的了解。DGM是NVIDIA开发的,用于监控和管理数据中心里的GPU,特别是针对多用户环境,比如云计算或者虚拟化平台。它的主要功能包括资源监控、策略管理和隔离,对吧? 接下来,用户可能想知道如何安装和配置DGM。我记得DGM通常是作为GPU驱动的一部分安装的,可能需要特定的版本支持。需要检查系统是否安装了合适的驱动,并且是否支持DGM。安装步骤可能包括添加仓库、安装软件包,然后启动服务。 然后,用户可能需要具体的命令示例。比如如何监控GPU使用情况,设置策略,或者隔离GPU。这部分需要确保命令的准确性,比如使用dmon查看实时数据,或者用dgm policy设置策略。还要注意权限问题,可能需要root或者sudo权限。 另外,用户可能关心实际应用场景,比如在多租户环境中如何防止资源争用,或者如何收集性能数据进行分析。这时候需要举例说明如何应用策略,比如限制某个进程的显存使用量。 还要考虑可能的常见问题,比如安装失败怎么办,或者策略不生效如何处理。这时候需要给出排查步骤,比如检查服务状态、日志文件的位置,或者驱动兼容性。 最后,要确保回答结构清晰,分步骤说明安装、配置、使用命令、应用示例和故障排查。同时,按照系统级指令的要求,数学公式用正确的LaTeX格式,但这里可能用不上太多公式,不过要注意代码块和命令的正确排版,使用反引号或者适当的高亮。</think>Datacenter GPU Manager(DGM)是NVIDIA开发的GPU集群管理工具,专为数据中心多用户环境设计。以下是分步使用方法: --- ### **一、安装与配置** 1. **环境要求** - NVIDIA Tesla系列GPU(A100/V100/T4等) - Linux系统(Ubuntu/CentOS/RHEL) - NVIDIA驱动≥450.80.02 - 需root权限 2. **安装步骤** ```bash # 添加官方仓库 curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list # 安装DGM sudo apt-get update sudo apt-get install datacenter-gpu-manager ``` 3. **启动服务** ```bash sudo systemctl enable nvidia-dcgm sudo systemctl start nvidia-dcgm ``` --- ### **二、核心功能命令** 1. **实时监控** ```bash # 查看所有GPU状态 dcgmi discovery -l # 监控GPU指标(每2秒刷新) dcgmi dmon -e 203,252 -d 2 ``` > 指标代码说明: > - `203`: GPU利用率 > - `252`: 显存使用量 2. **策略管理** ```bash # 创建策略组(限制显存80%) dcgmi group -c mypolicy --default # 设置策略 dcgmi policy -g mypolicy -p "memory.used < 80%" ``` 3. **进程隔离** ```bash # 将进程绑定到指定GPU dcgmi launch --pid 1234 --gpu 0,1 ``` --- ### **三、高级应用场景** 1. **多租户资源隔离** ```bash # 创建两个资源组 dcgmi group -c groupA -g 0-3 dcgmi group -c groupB -g 4-7 # 为租户分配不同策略 dcgmi policy -g groupA -p "power.draw < 200W" ``` 2. **性能数据收集** ```bash # 启动数据记录(持续60秒) dcgmi profile --start -i 30000 -o ./gpu_log.csv ``` --- ### **四、故障排查** 1. **服务状态检查** ```bash sudo systemctl status nvidia-dcgm journalctl -u nvidia-dcgm -n 50 ``` 2. **兼容性验证** ```bash dcgmi health --check ``` 3. **日志分析** ```bash tail -f /var/log/nvidia-dcgm/*.log ``` --- ### **五、典型输出示例** ```plaintext GPU 0 Status: │─ Utilization : 45% │─ Memory Usage : 12GB/32GB │─ Temperature : 65°C │─ Power Draw : 180W/250W └─ Violated Policy : None ``` --- ### **注意事项** 1. 使用`dcgmi`命令需配合`sudo` 2. 策略冲突时按优先级处理(可通过`dcgmi policy -l`查看) 3. 长期运行建议配合Prometheus+Grafana实现可视化监控 如需更深入的功能(如NUMA拓扑优化、MIG配置),可参考官方文档《NVIDIA Data Center GPU Manager User Guide》。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值