tensor_flow学习(二)keras指南

这篇博客介绍了TensorFlow官网的Keras Sequential模型教程,重点讲解了全连接层(Dense)的使用。通过一个1x4向量输入到4x2矩阵的Dense层,解释了如何确定输出向量的形状。同时提到了Sequential模型创建时权重未确定,只有在设置输入后才会确定维度。文中还探讨了Dense层权重的计算,总参数数为35。
摘要由CSDN通过智能技术生成

tensor_flow官网上的教程链接:

https://tensorflow.google.cn/guide/keras/sequential_model

这里教了最基本的全链接Dense,其中tensor的shape需要弄清楚,可以使用tensor.get_shape()来获取形状。

layer1 = layers.Dense(2)
x = tf.ones((1, 4))
y = layer1(x)
layer1.weights  # Now it has weights, of shape (4, 3) and (3,)
[<tf.Variable 'dense_9/kernel:0' shape=(4, 2) dtype=float32, numpy=
 array([[ 0.16653562,  0.9739351 ],
        [ 0.54127383,  0.7828257 ],
        [-0.5645373 , -0.555321  ],
        [ 0.17373228,  0.43521905]], dtype=float32)>,
 <tf.Variable 'dense_9/bias:0' shape=(2,) dtype=float32, numpy=array([0., 0.], dtype=float32)>]
print(x)
print(y)
tf.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值