Armnn(v21.05)使用方法及部分源码理解

        工作原因需要使用 Armnn 进行神经网络推理,之前使用 tensorflow2 的 detection API 训练了自己SSD模型,转换成tflite以后使用 tensorflow lite 进行推理,效果还可以,但是部署到 Armnn 上却出现了问题。报错:

what():  MemCopyQueueDescriptor: input->10 & output->40 must have the same number of elements.

用tflite推理都没问题,说明模型没问题,那么就是Armnn支持的问题了,因为mobile-net-ssd也没什么特别的操作符,对比了之前运行良好的模型,发现可能出问题的是

TFLite_Detection_PostProcess 这个操作符,查看了Armnn支持的操作符,里边却赫然显示着支持这个操作符,在Armnn找到了相应的issue,把自己的问题也发到上边去了,可是Armnn项目组日理万机,看来只能自己去看看哪里有问题了。在找bug的过程中把Armnn运行的流程大概看了一下,记录下来。

1. Armnn 使用示例

clone下来Armnn源码,里边有 /samples/ObjectDetection 文件夹,这里是一个用目标检测的示例程序,可以使用SSD和YOLO。 还有一个 /tests/ExecuteNetwork 文件夹这里的程序也是一些检测程序,里边也涉及了如何使用Armnn进行推理的流程,主要涉及几个步骤。

1)使用parser_解析模型文件,生成network

//当前版本的Armnn只支持这两种格式的解析了
armnnTfLiteParser::ITfLiteParserPtr parser_
armnnOnnxParser::IOnnxParserPtr

parser_的作用就是读取.tflite文件,并解析为Armnn的网络 

parser_ = armnnOnnxParser::IOnnxParser::Create();
network_ = parser_->CreateNetworkFromBinaryFile(model_path);

2)创建runtime_并加载优化后的network

这是Armnn中最核心的结构了,涉及三个文件

IRuntime.hpp

Runtime.cpp

Runtime.hpp

首先根据 options 创建一个 runtime_

armnn::IRuntime::CreationOptions runtimeOptions;
runtime_ = armnn::IRuntime::Create(runtimeOptions);

之后会对第一步中生成的network进行优化,优化过程需要用到runtime_的一些配置

armnn::IOptimizedNetworkPtr opt_net = armnn::Optimize(*network_, preferred_backends, runtime_->GetDeviceSpec(), optimizer_options);

当然优化之前需要设定一些优化选项

        armnn::OptimizerOptions optimizer_options;
        optimizer_options.m_ReduceFp32ToFp16 = false;
        std::vector<armnn::BackendId> preferred_backends;
        preferred_backends.push_back(armnn::Compute::GpuAcc);
        armnn::BackendOptions gpuAcc("GpuAcc",
                                        {
                                            { "FastMathEnabled", true },
                                            { "TuningLevel", 2},
                                        });
        optimizer_options.m_ModelOptions.push_back(gpuAcc);
        preferred_backends.push_back(armnn::Compute::CpuAcc);
        armnn::BackendOptions cpuAcc("CpuAcc",
                                        {
                                            { "FastMathEnabled", true },
                                            { "NumberOfThreads", num_threads },
                                        });
        optimizer_options.m_ModelOptions.push_back(cpuAcc);
        preferred_backends.push_back(armnn::Compute::CpuRef);

最后把网络加载到 runtime_

runtime_->LoadNetwork(networkIdentifier_, std::move(opt_net));

3)设置输入输出tensor的信息并加入到workload里

这里最终会调用 EnqueueWorkload ,这一步就是执行推断,但是之前需要给 input 和 output tensor 配置 tensorinfo,包括维度,内存区域等信。 (我遇到的问题就出在这里,具体来说就是

parser_的GetNetworkInputBindingInfo()函数)

runtime_->EnqueueWorkload(networkIdentifier_, list_armnntensor_in_, list_armnntensor_out_);

2. 问题排查暨源码阅读

找BUG都是倒着查找,这里就不倒着来了,直接按照正向的代码顺序把问题出在哪里理顺一下。

1)解析tflite文件

首先确保 TfLiteParser 解析文件没有解析错误, 涉及三个文件

ITfLiteParser.hpp

TfLiteParser.hpp

TfLiteParser.cpp

TfLiteParser 只是接口,TfLiteParserImpl是其实现,最终调用的是 TfLiteParserImpl 的函数。

INetworkPtr TfLiteParserImpl::CreateNetworkFromBinaryFile(const char* graphFile)
{
    ResetParser();
    m_Model = LoadModelFromFile(graphFile);// using ModelPtr = std::unique_ptr<tflite::ModelT>;
    return CreateNetworkFromModel();
}

 函数调用

// 加载2进制文件
TfLiteParserImpl::ModelPtr TfLiteParserImpl::LoadModelFromFile(const char * fileName)
{
    if (fileName == nullptr)
    {
        throw InvalidArgumentException(fmt::format("Invalid (null) file name {}",
                                       CHECK_LOCATION().AsString()));
    }
    std::error_code errorCode;
    fs::path pathToFile(fileName);
    if (!fs::exists(pathToFile, errorCode))
    {
        //fmt::format() could not be used here (format error)
        std::stringstream msg;
        msg << "Cannot find the file (" << fileName << ") errorCode: " << errorCode
            << " " << CHECK_LOCATION().AsString();

        throw FileNotFoundException(msg.str());
    }
    std::ifstream file(fileName, std::ios::binary);
    std::string fileContent((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
    return LoadModelFromBinary(reinterpret_cast<const uint8_t *>(fileContent.c_str()),
                               fileContent.size());
}
// 从2进制解析出来
TfLiteParserImpl::ModelPtr TfLiteParserImpl::LoadModelFromBinary(const uint8_t * binaryContent, size_t len)
{
    if (binaryContent == nullptr)
     {
        throw InvalidArgumentException(fmt::format("Invalid (null) binary content {}",
                                       CHECK_LOCATION().AsString()));
     }
    flatbuffers::Verifier verifier(binaryContent, len);
    if (verifier.VerifyBuffer<tflite::Model>() == false)
    {
        throw ParseException(
            fmt::format("Buffer doesn't conform to the expected Tensorflow Lite "
                        "flatbuffers format. size:{} {}",
                        len,
                        CHECK_LOCATION().AsString()));
    }
    // 这里把二进制转成tflite的model,调用的是tflite库里的函数
    return tflite::UnPackModel(binaryContent);
}

上边代码实现了从二进制文件得到tflite格式网络模型 m_Model,紧接着就是把 m_Model 转换成Armnn的网络 m_Network

INetworkPtr TfLiteParserImpl::CreateNetworkFromModel()
{

    using NetworkOptions = std::vector<BackendOptions>;
    NetworkOptions networkOptions = {};
    if (m_Options && m_Options.value().m_InferAndValidate)
    {
        // shape 验证方式
        BackendOptions shapeInferenceMethodOption("ShapeInferenceMethod",
                                                  {
                                                      { "InferAndValidate", true }
                                                  });

        networkOptions.push_back(shapeInferenceMethodOption);
    }
    // 创建一个空的network
    m_Network = INetwork::Create(networkOptions);//这里只设定验证方式
    ARMNN_ASSERT(m_Model.get() != nullptr);

    if (m_Model->subgraphs.size() != 1)
    {
        throw ParseException(
                fmt::format("Current TfLite parser only supports 1 subgraph. Current one has: {} {}",
                            m_Model->subgraphs.size(),
                            CHECK_LOCATION().AsString()));
    }

    size_t subgraphIndex = 0;
    size_t operatorIndex = 0;
    try
    {
        for (SubgraphPtr const& subgraph : m_Model->subgraphs)
        {
            m_SubgraphConnections.emplace_back(subgraph->tensors.size());// subgraph一共多少个tensor
            for (OperatorPtr const& op : subgraph->operators)// 遍历每一个操作符
            {
                auto const& opCodePtr = m_Model->operator_codes[op->opcode_index];//得到操作符的code,这个code其实就是一个enmu
                auto builtinCode = opCodePtr->builtin_code;
                // builtin的就这么多,显然那个PostProcess不是builtin
                // 其实解析定制操作就是一种builtin的operator...
                if (builtinCode > tflite::BuiltinOperator_MAX)// builtin的就这么多,显然那个PostProcess不是builtin
                {
                    throw ParseException(fmt::format("Operator code {} is out of range 0-{}. "
                                                     "subgraph:{} operator idx:{}. {}",
                                                     builtinCode, tflite::BuiltinOperator_MAX, subgraphIndex,
                                                     operatorIndex, CHECK_LOCATION().AsString()));
                }

                // lookup and call the parser function
                // 这里会查看注册好的所有builtin operater,调用相应的function解析,一点点构建armnn的network
                // 显然这里不包括postprocess
                
                auto& parserFunction = m_ParserFunctions[builtinCode];
                (this->*parserFunction)(subgraphIndex, operatorIndex);
                ++operatorIndex;
            }

            SetupInputLayers(subgraphIndex);
            SetupOutputLayers(subgraphIndex);
            SetupConstantLayers(subgraphIndex);

            ++subgraphIndex;
            operatorIndex = 0;
        }
    }
    catch (const ParseException& e)
    {
        std::stringstream errorString;
        errorString << "Failed to parse operator #" << operatorIndex << " within subgraph #"
                    << subgraphIndex << " error: " << e.what();
        ARMNN_LOG(error) << errorString.str();
        std::stringstream errors;
        errors << errorString.str() << "\n";
        throw ParseException(errors.str());
    }

    // establish the connections from the layer outputs to the inputs of the subsequent layers
    // 把layer的输出和下一个layer的输入连接起来
    for (subgraphIndex = 0; subgraphIndex < m_SubgraphConnections.size(); ++subgraphIndex)
    {
        for (size_t tensorIndex = 0; tensorIndex < m_SubgraphConnections[subgraphIndex].size(); ++tensorIndex)
        {
            if (m_SubgraphConnections[subgraphIndex][tensorIndex].outputSlot != nullptr)
            {
                for (size_t inputSlotIdx = 0;
                    inputSlotIdx < m_SubgraphConnections[subgraphIndex][tensorIndex].inputSlots.size();
                    ++inputSlotIdx)
                {
                    m_SubgraphConnections[subgraphIndex][tensorIndex].outputSlot->Connect(
                        *(m_SubgraphConnections[subgraphIndex][tensorIndex].inputSlots[inputSlotIdx]));
                }
            }
        }
    }

    return std::move(m_Network);
}

这段代码中最重要的部分就是 try 里的内容,遍历 subgraph 里的所有 operator ,并调用相应的解析函数进行解析,制作成 network 的 layer , ParserFunctions 有很多,根据 builtinCode 进行查找,其中32号是定制操作符的解析函数

m_ParserFunctions[tflite::BuiltinOperator_CUSTOM]                  = &TfLiteParserImpl::ParseCustomOperator;
void TfLiteParserImpl::ParseCustomOperator(size_t subgraphIndex, size_t operatorIndex)
{
    CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);
    // NOTE: By default we presume the custom operator is not supported
    auto customParserFunction = &TfLiteParserImpl::ParseUnsupportedOperator;

    // Identify custom code defined for custom operator
    const auto& operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];
    const auto& customCode  = m_Model->operator_codes[operatorPtr->opcode_index]->custom_code;
    // 如果有这个operater有custom code,那么这里是可以找到的一个string:  TFLite_Detection_PostProcess
    // Find parser function that correspondes to custom code (if any)
    auto iterator = m_CustomParserFunctions.find(customCode);
    if (iterator != m_CustomParserFunctions.end())
    {
        customParserFunction = iterator->second;
    }

    // Run parser function
    (this->*customParserFunction)(subgraphIndex, operatorIndex);// 0 95
}

这个函数会去按照 customCode  (TFLite_Detection_PostProcess) 查询有没有相应的解析函数并调用,我们这里是调用的

m_CustomParserFunctions["TFLite_Detection_PostProcess"]      = &TfLiteParserImpl::ParseDetectionPostProcess;

可以看到目前只有这一个 customParserFuncton 这样看来如果某些网络有自己特定的操作符,我们也可以在这里进行添加。

接下来就是我这次遇到问题的地方,Armnn 对这个特定操作符的解析存在一定问题

void TfLiteParserImpl::ParseDetectionPostProcess(size_t subgraphIndex, size_t operatorIndex)// 0 95
{
    CHECK_MODEL(m_Model, subgraphIndex, operatorIndex);

    const auto & operatorPtr = m_Model->subgraphs[subgraphIndex]->operators[operatorIndex];

    // 这两个返回的都是 TensorRawPtrVector
    auto inputs = GetInputs(m_Model, subgraphIndex, operatorIndex);
    auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);
    // output是四个
    CHECK_VALID_SIZE(outputs.size(), 4);

    // Obtain custom options from flexbuffers
    auto custom_options = operatorPtr->custom_options;
    const flexbuffers::Map& m = flexbuffers::GetRoot(custom_options.data(), custom_options.size()).AsMap();
    
    // Obtain descriptor information from tf lite
    DetectionPostProcessDescriptor desc;
    desc.m_MaxDetections           = m["max_detections"].AsUInt32();
    desc.m_MaxClassesPerDetection  = m["max_classes_per_detection"].AsUInt32();
    desc.m_NmsScoreThreshold       = m["nms_score_threshold"].AsFloat();
    desc.m_NmsIouThreshold         = m["nms_iou_threshold"].AsFloat();
    desc.m_NumClasses              = m["num_classes"].AsUInt32();
    desc.m_ScaleH                  = m["h_scale"].AsFloat();
    desc.m_ScaleW                  = m["w_scale"].AsFloat();
    desc.m_ScaleX                  = m["x_scale"].AsFloat();
    desc.m_ScaleY                  = m["y_scale"].AsFloat();

    if (!(m["use_regular_nms"].IsNull()))
    {
        desc.m_UseRegularNms       = m["use_regular_nms"].AsBool();
    }
    if (!(m["detections_per_class"].IsNull()))
    {
        desc.m_DetectionsPerClass  = m["detections_per_class"].AsUInt32();
    }

    if (desc.m_NmsIouThreshold <= 0.0f || desc.m_NmsIouThreshold > 1.0f)
    {
        throw InvalidArgumentException("DetectionPostProcessTFLiteParser: Intersection over union threshold "
                                       "must be positive and less than or equal to 1.");
    }

    // 我们知道这里的输入是两个1917x4 1917xclass
    armnn::TensorInfo anchorTensorInfo = ToTensorInfo(inputs[2]);
    auto anchorTensorAndData = CreateConstTensorNonPermuted(inputs[2], anchorTensorInfo);

    auto layerName = fmt::format("DetectionPostProcess:{}:{}", subgraphIndex, operatorIndex);
    IConnectableLayer* layer = m_Network->AddDetectionPostProcessLayer(desc, anchorTensorAndData,
                                                                       layerName.c_str());

    ARMNN_ASSERT(layer != nullptr);

    // The model does not specify the output shapes.
    // The output shapes are calculated from the max_detection and max_classes_per_detection.
    unsigned int numDetectedBox = desc.m_MaxDetections * desc.m_MaxClassesPerDetection;
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox, 4 }); //40
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10 
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10
    m_OverridenOutputShapes.push_back({ 1 });                    //1
    // 这里顺序要改
    // 1
    m_OverridenOutputShapes_2.push_back({ 1, numDetectedBox });       //10
    // 2
    m_OverridenOutputShapes_2.push_back({ 1, numDetectedBox, 4 });    //40
    // 3
    m_OverridenOutputShapes_2.push_back({ 1 });                       //1
    // 4
    m_OverridenOutputShapes_2.push_back({ 1, numDetectedBox });       //10



    for (unsigned int i = 0 ; i < outputs.size() ; ++i)
    {
        armnn::TensorInfo detectionBoxOutputTensorInfo = ToTensorInfo(outputs[i], m_OverridenOutputShapes[i]);
        layer->GetOutputSlot(i).SetTensorInfo(detectionBoxOutputTensorInfo);
    }

    // Register the input connection slots for the layer, connections are made after all layers have been created
    // only the tensors for the inputs are relevant, exclude the const tensors
    auto inputTensorIndexes = AsUnsignedVector(GetInputTensorIds(m_Model, subgraphIndex, operatorIndex));
    RegisterInputSlots(subgraphIndex, operatorIndex, layer, {inputTensorIndexes[0], inputTensorIndexes[1]});

    // Register the output connection slots for the layer, connections are made after all layers have been created
    auto outputTensorIndexes = AsUnsignedVector(GetOutputTensorIds(m_Model, subgraphIndex, operatorIndex));
    // 这里是4567的顺序,是正确的
    // 那么下边注册应该也是正确的
    RegisterOutputSlots(subgraphIndex, operatorIndex, layer, {outputTensorIndexes[0],
                                                              outputTensorIndexes[1],
                                                              outputTensorIndexes[2],
                                                              outputTensorIndexes[3]});
}

具体来说就是OutputShape设定的问题

    m_OverridenOutputShapes.push_back({ 1, numDetectedBox, 4 }); //40
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10 
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10
    m_OverridenOutputShapes.push_back({ 1 });                    //1

这里这个push_back的顺序和后边设置layer输出TensorShape的顺序是相对应的

layer->GetOutputSlot(i).SetTensorInfo(detectionBoxOutputTensorInfo);

而这个顺序是按照 outputs 顺序来的

auto outputs = GetOutputs(m_Model, subgraphIndex, operatorIndex);

TfLiteParserImpl::TensorRawPtrVector TfLiteParserImpl::GetOutputs(const ModelPtr & model,
                                                                  size_t subgraphIndex,
                                                                  size_t operatorIndex)
{
    CHECK_MODEL(model, subgraphIndex, operatorIndex);

    const auto & subgraphPtr = model->subgraphs[subgraphIndex];
    const auto & operatorPtr = subgraphPtr->operators[operatorIndex];

    size_t outputCount = operatorPtr->outputs.size();
    TensorRawPtrVector result(outputCount);
    for (size_t i=0; i<outputCount; ++i)
    {
        uint32_t outputId = CHECKED_NON_NEGATIVE(operatorPtr->outputs[i]);
        CHECK_TENSOR(model, subgraphIndex, outputId);
        result[i] = subgraphPtr->tensors[outputId].get();
    }
    return result;
}

而这个outputs的顺序是通过operator的output顺序得到的,这些顺序目前是没有问题的,模型可以正常解析并转换,但是后边在进行推断的时候会去检查这个输出TensorShape,那里确是按照subgraph的outputs顺序检查的,tensorflow1的模型里这两个顺序是一样的,但是我用tensorflow2.7训练的模型这两个顺序不一样,因为没有研究tensorflowlite的源码,我也不清楚为啥不一样,就是因为顺序不一样,导致推断时会报出开篇提到的那个错误。我们先把这里马克一下,回头需要进行修改。

2)模型推断流程

Status LoadedNetwork::EnqueueWorkload(const InputTensors& inputTensors,
                                      const OutputTensors& outputTensors)
{
    const Graph& graph = m_OptimizedNetwork->pOptimizedNetworkImpl->GetGraph();

    // Walk graph to determine the order of execution.
    if (graph.GetNumLayers() < 2)
    {
        ARMNN_LOG(warning) << "IRuntime::EnqueueWorkload()::Less than two nodes in graph";
        return Status::Failure;
    }
    
    // Data that must be kept alive for the entire execution of the workload.
    WorkloadData workloadData(inputTensors, outputTensors);

    if (graph.GetNumInputs() != inputTensors.size())
    {
        throw InvalidArgumentException("Number of inputs provided does not match network.");
    }

    // For each input to the network, call EnqueueInput with the data passed by the user.
    {
        ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "PrepareInputs");
        m_InputQueue.clear();
        m_InputQueue.reserve(graph.GetNumInputs());
        for (const BindableLayer* inputLayer : graph.GetInputLayers())
        {
            const TensorPin& pin = workloadData.GetInputTensorPin(inputLayer->GetBindingId());
            EnqueueInput(*inputLayer, pin.GetTensorHandle(), pin.GetTensorInfo());
        }
    }

    // For each output to the network, call EnqueueOutput with the data passed by the user.
    {
        ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "PrepareOutputs");
        m_OutputQueue.clear();
        m_OutputQueue.reserve(graph.GetNumOutputs());
        for (const BindableLayer* outputLayer : graph.GetOutputLayers()){
        }

        for (const BindableLayer* outputLayer : graph.GetOutputLayers())
        {
                        const TensorPin& pin = workloadData.GetOutputTensorPin(outputLayer->GetBindingId());
            EnqueueOutput(*outputLayer, pin.GetTensorHandle(), pin.GetTensorInfo());
        }
    }

    std::unique_ptr<TimelineUtilityMethods> timelineUtils =
                        TimelineUtilityMethods::GetTimelineUtils(m_ProfilingService);
    ProfilingGuid inferenceGuid = m_ProfilingService.GetNextGuid();
    if (timelineUtils)
    {
        // Add inference timeline trace if profiling is enabled.
        ProfilingGuid networkGuid = m_OptimizedNetwork->GetGuid();
        timelineUtils->CreateTypedEntity(inferenceGuid, LabelsAndEventClasses::INFERENCE_GUID);
        timelineUtils->CreateRelationship(ProfilingRelationshipType::RetentionLink,
                                          networkGuid,
                                          inferenceGuid,
                                          LabelsAndEventClasses::EXECUTION_OF_GUID);
        timelineUtils->RecordEvent(inferenceGuid, LabelsAndEventClasses::ARMNN_PROFILING_SOL_EVENT_CLASS);
    }

    bool executionSucceeded = true;

    {
        if (m_ProfilingService.IsProfilingEnabled())
        {
            m_ProfilingService.IncrementCounterValue(armnn::profiling::INFERENCES_RUN);
        }
        ARMNN_SCOPED_PROFILING_EVENT(Compute::Undefined, "Execute");
        ARMNN_SCOPED_HEAP_PROFILING("Executing");
        executionSucceeded = Execute(timelineUtils, inferenceGuid);
    }

    if (timelineUtils)
    {
        // Add end of life of the inference timeline if profiling is enabled.
        timelineUtils->RecordEvent(inferenceGuid, LabelsAndEventClasses::ARMNN_PROFILING_EOL_EVENT_CLASS);
        timelineUtils->Commit();
    }
    return executionSucceeded ? Status::Success : Status::Failure;
}

从示例程序中我们看到了,EnqueueWorkload 这个函数就是执行推断,其中这个函数

EnqueueOutput(*outputLayer, pin.GetTensorHandle(), pin.GetTensorInfo());

会创建一个

        std::unique_ptr<IWorkload> outputWorkload =
            std::make_unique<CopyMemGenericWorkload>(outputQueueDescriptor, info);

CopyMemGenericWorkload 创建的时候就会去检查  validate ,这就是报错的地方。

但是其实从 workload 创建的时候已经错了,原因是

Status LoadedNetwork::EnqueueWorkload(const InputTensors& inputTensors,
                                      const OutputTensors& outputTensors)

这里的 OutputTensors 就是错的,通过示例程序可知,这个输入参数是通过

GetNetworkOutputBindingInfo

得到的,我们看一下这个函数是怎么实现的。

BindingPointInfo TfLiteParserImpl::GetNetworkOutputBindingInfo(size_t subgraphId,
                                                               const std::string& name) const
{
    CHECK_SUBGRAPH(m_Model, subgraphId);
    // struct TensorT : public flatbuffers::NativeTable {
    // name          id        elements
    // call_0   -->  247  -->  1
    // call_1   -->  246  -->  10
    // call_2   -->  245  -->  10
    // call_3   -->  244  -->  40
    auto outputs = GetSubgraphOutputs(m_Model, subgraphId);
    // outputId : 246
    // outputId : 244
    // outputId : 247
    // outputId : 245
    // 在4个output里找出来name一致的那一个,是第i个,那么去读第i个的shape
    for (unsigned int i = 0; i < outputs.size(); ++i)
    {
        auto const output = outputs[i];// outputs vector<std::pair<size_t, TensorRawPtr>>, 
        if (output.second->name == name)// Tensor的名字
        {
            auto bindingId = GenerateLayerBindingId(subgraphId, output.first);
            std::vector<unsigned int> shape = m_OverridenOutputShapes.size() > 0 ?
                                                m_OverridenOutputShapes[i] : AsUnsignedVector(output.second->shape);
            return std::make_pair(bindingId, ToTensorInfo(output.second, shape));
        }
    }

    std::stringstream bindings;
    for (auto const & output : outputs)
    {
        bindings << "'" << output.second->name << "' ";
    }

    throw ParseException(
        fmt::format("No output binding found for subgraph:{} and name:{}. "
                    "Possible outputs are: [{}] {}",
                    subgraphId,
                    name,
                    bindings.str(),
                    CHECK_LOCATION().AsString()));
}

可以看到这里的 outputs 是从 subgraph 得到的

TfLiteParserImpl::TensorIdRawPtrVector TfLiteParserImpl::GetSubgraphOutputs(const ModelPtr & model,
                                                                            size_t subgraphIndex)
{
    CHECK_SUBGRAPH(model, subgraphIndex);
    const auto & subgraphPtr = model->subgraphs[subgraphIndex];
    size_t outputCount = subgraphPtr->outputs.size();// 4
    TensorIdRawPtrVector result(outputCount);
    // using TensorIdRawPtr = std::pair<size_t, TensorRawPtr>;
    // using TensorIdRawPtrVector = std::vector<TensorIdRawPtr>;
    for (size_t i=0; i<outputCount; ++i)
    {
        uint32_t outputId = CHECKED_NON_NEGATIVE(subgraphPtr->outputs[i]);
        // 这里的outputId应该还是tensorflowlite里的,不是6xxxx
        // outputId : 246
        // outputId : 244
        // outputId : 247
        // outputId : 245

        result[i] = std::make_pair(outputId, subgraphPtr->tensors[outputId].get());
    }
    return result;
}

就是因为他这里用了 m_OverridenOutputShapes 而这个东西是写死的,

    // name          id        elements
    // call_0   -->  247  -->  1
    // call_1   -->  246  -->  10
    // call_2   -->  245  -->  10
    // call_3   -->  244  -->  40
    auto outputs = GetSubgraphOutputs(m_Model, subgraphId);
    // outputId : 246
    // outputId : 244
    // outputId : 247
    // outputId : 245

    
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox, 4 }); //40
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10 
    m_OverridenOutputShapes.push_back({ 1, numDetectedBox });    //10
    m_OverridenOutputShapes.push_back({ 1 });                    //1


例如我现在在检查 call_0
会在第3个的时候发现 name 匹配,然后就去读取 m_OverridenOutputShape[3] 
而第3个却是在解析时的 call_2
又不能简单地改 m_OverridenOutputShape 的顺序,因为这个顺序改了,subgraph 得到的 outputs顺序也会变,永远对不齐。更深层次的为什么 operator 和 subgraph 的 outputs 顺序不一样得去  tensorflow 源码里看了。
但是 Armnn 这种写死的做法肯定也不太好,我们给他改一下。

PS:

TFLite_Detection_PostProcess 这个操作符不能使用GPU加速,只能使用CpuRef,这样会导致包含这个操作符的网络推理时间都会边长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值