集成学习综合指南(使用Python代码)

161 篇文章 9 订阅 ¥19.90 ¥99.00
161 篇文章 4 订阅
本文深入探讨集成学习的概念,介绍了基本和高级的集成技术,如最大投票、平均和加权平均,并通过实际案例解释了堆叠、混合、装袋和提升等方法。文章以Python代码展示了包括Bagging元估计器、随机森林、AdaBoost、GBM、XGBoost、Light GBM和CatBoost在内的多种算法,并详细讨论了各个算法的关键参数。
摘要由CSDN通过智能技术生成

Introduction

当您想购买新车时,您会走到第一家汽车店并根据经销商的建议购买吗? 这不太可能。

您可能会浏览一些门户网站,人们发布评论并比较不同的车型,检查其功能和价格。 你也可能会问你的朋友和同事他们的意见。 简而言之,你不会直接得出结论,而是会考虑其他人的意见做出决定。

在这里插入图片描述

机器学习中的集合模型基于类似的想法。 他们将多个模型的决策结合起来,以提高整体绩效。 这可以通过各种方式实现,您将在本文中发现。

本文的目的是介绍集成学习的概念,并理解使用该技术的算法。 为了巩固您对这个多样化主题的理解,我们将使用针对现实问题的实际案例研究来解释Python中的高级算法。

注意:本文假设您对机器学习算法有基本的了解。 我建议您浏览本文以熟悉这些概念。

Table of Contents

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Adam婷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值