正交变换

本文详细介绍了图像处理中的正交变换,包括线性系统、卷积、相关和正交变换的概念及其应用。重点讨论了正交变换的理论,如正交函数的完备性和离散情况,并详细阐述了各种正交变换,如傅里叶变换、离散哈特利变换、离散余弦变换等,以及它们的性质和实际应用。
摘要由CSDN通过智能技术生成

图像处理中的正交变换

图像的频域变换

线性系统

定义:两个不同的输入,通过线性系统得到两个不同的输出,如果这两个输入叠加输入线性系统,得到的输出为单独输入得到的输出的叠加

线性系统移不变性:输入信号沿时间轴平移T输出也沿时间轴平移T

卷积

对于线性系统的输入 f ( t ) 和 输 出 y ( t ) f(t)和输出y(t) f(t)y(t),必定存在关系:
y ( t ) = f ( t ) ∗ h ( t ) = ∫ − ∞ ∞ f ( τ ) h ( t − τ ) d τ y(t)=f(t)*h(t)=\int_{-\infty}^{\infty}f(\tau)h(t-\tau)d\tau y(t)=f(t)h(t)=f(τ)h(tτ)dτ

离散一维卷积

y ( i ) = f ( i ) ∗ h ( i ) = ∑ j f ( j ) h ( i − j ) y(i)=f(i)*h(i)=\sum_j f(j)h(i-j) y(i)=f(i)h(i)=jf(j)h(ij)

二维卷积

y ( x , y ) = f ∗ h = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( i , j ) h ( x − i , y − i ) d i d j y(x,y)=f*h=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(i,j)h(x-i,y-i)didj y(x,y)=fh=f(i,j)h(xi,yi)didj

离散二维卷积

y ( x , y ) = f ∗ h = ∑ i ∑ j f ( i , j ) h ( x − i , y − i ) y(x,y)=f*h=\sum_i\sum_jf(i,j)h(x-i,y-i) y(x,y)=fh=ijf(i,j)h(xi,yi)

相关

R f g ( t ) = f ( t ) ∙ g ( t ) = ∫ − ∞ ∞ f ( τ ) h ( t + τ ) d τ R_{fg}(t)=f(t)\bullet g(t)=\int_{-\infty}^{\infty}f(\tau)h(t+\tau)d\tau R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值