1. 开环系统及其开环传递函数定义
在现代控制理论中,开环系统是指没有反馈的系统,也就是说这个系统是不需要传感器的,只有单向的控制环节。
对于一个简单的线性时不变(LTI)开环系统,假设其由一个传递环节组成,传递函数通常定义为输出拉普拉斯变换与输入拉普拉斯变换之比。
例如,考虑一个开环系统,其输入为 r(t),输出为 y(t)
,传递函数为 G(s)
。那么在拉普拉斯域中,输出 Y(s)=G(s)R(s)
,传递函数 G(s)
就是开环系统的传递函数,它描述了系统对输入信号的静态和动态特性,包括增益、时间常数等因素对系统输出的影响。
2. 闭环系统及其闭环传递函数定义
闭环系统也称为反馈控制系统。对于一个基本的负反馈闭环系统,其传递函数的推导要考虑反馈环节。
假设前向通道传递函数为 G(s),反馈通道传递函数为 H(s)
。闭环传递函数 T(s)
通常定义为输出 Y(s)
与输入 R(s)
的拉普拉斯变换之比,即 T(s)=R(s)Y(s)
。
其表达式为 T(s)=G(s)/1+HsGs。这个公式的意义是,闭环系统综合考虑了前向通道和反馈通道的作用。当 G(s)H(s)
的值较大时,闭环系统的性能主要由反馈决定;当 G(s)H(s)
的值较小时,闭环系统性能接近开环系统性能。
- 3.详细的推导过程
开环系统的传递函数 G(s) 表示系统本身的传递函数,没有反馈。闭环系统包含前向通道和反馈通道,前向通道的传递函数为 G(s)
,反馈通道的传递函数为 H(s)
。
在负反馈系统中,输出 Y(s) 通过前向通道 G(s) 得到,同时有一个反馈信号 B(s)=H(s)Y(s)
。输入到系统的信号是参考输入 R(s)
减去反馈信号 B(s)
,即误差信号 E(s)=R(s)-B(s)=R(s)-H(s)Y(s)
。
误差信号 E(s) 经过前向通道 G(s) 后得到输出 Y(s):
Y(s)=G(s)E(s)=G(s)[R(s)-H(s)Y(s)]
展开并整理:
Y(s)=G(s)R(s)-G(s)H(s)Y(s)
将包含 Y(s) 的项移到等式左边:
Y(s)+G(s)H(s)Y(s)=G(s)R(s)
提取 Y(s):
Y(s)[1+G(s)H(s)]=G(s)R(s)
两边同时除以 [1+G(s)H(s)]:
Ys=Gs1+HsGsR(s)
因此,闭环传递函数 T(s) 为:
T(s)=Y(s)/R(s)=Gs1+HsGs
需要注意的特殊情况:
- 当 1+G(s)H(s)=0
时,分母为零,可能导致系统不稳定。
- 如果反馈是正反馈,公式会变成 T(s)=Gs1-HsGs
。