开环和闭环传递函数分析,及其推导过程

1. 开环系统及其开环传递函数定义

在现代控制理论中,开环系统是指没有反馈的系统,也就是说这个系统是不需要传感器的,只有单向的控制环节。

对于一个简单的线性时不变(LTI)开环系统,假设其由一个传递环节组成,传递函数通常定义为输出拉普拉斯变换与输入拉普拉斯变换之比。

例如,考虑一个开环系统,其输入为 r(t),输出为 y(t),传递函数为 G(s)。那么在拉普拉斯域中,输出 Y(s)=G(s)R(s),传递函数 G(s) 就是开环系统的传递函数,它描述了系统对输入信号的静态和动态特性,包括增益、时间常数等因素对系统输出的影响。

2. 闭环系统及其闭环传递函数定义

闭环系统也称为反馈控制系统。对于一个基本的负反馈闭环系统,其传递函数的推导要考虑反馈环节。

假设前向通道传递函数为 G(s),反馈通道传递函数为 H(s)。闭环传递函数 T(s) 通常定义为输出 Y(s) 与输入 R(s) 的拉普拉斯变换之比,即 T(s)=R(s)Y(s)​。

其表达式为 T(s)=G(s)/1+HsGs​。这个公式的意义是,闭环系统综合考虑了前向通道和反馈通道的作用。当 G(s)H(s) 的值较大时,闭环系统的性能主要由反馈决定;当 G(s)H(s) 的值较小时,闭环系统性能接近开环系统性能。

  1. 3.详细的推导过程

     开环系统的传递函数 G(s) 表示系统本身的传递函数,没有反馈。闭环系统包含前向通道和反馈通道,前向通道的传递函数为 G(s),反馈通道的传递函数为 H(s)

在负反馈系统中,输出 Y(s) 通过前向通道 G(s) 得到,同时有一个反馈信号 B(s)=H(s)Y(s)。输入到系统的信号是参考输入 R(s) 减去反馈信号 B(s),即误差信号 E(s)=R(s)-B(s)=R(s)-H(s)Y(s)

误差信号 E(s) 经过前向通道 G(s) 后得到输出 Y(s):

Y(s)=G(s)E(s)=G(s)[R(s)-H(s)Y(s)]

展开并整理:

Y(s)=G(s)R(s)-G(s)H(s)Y(s)

将包含 Y(s) 的项移到等式左边:

Y(s)+G(s)H(s)Y(s)=G(s)R(s)

提取 Y(s)

Y(s)[1+G(s)H(s)]=G(s)R(s)

两边同时除以 [1+G(s)H(s)]

Ys=Gs1+HsGsR(s)

因此,闭环传递函数 T(s) 为:

T(s)=Y(s)​/R(s)=Gs1+HsGs

需要注意的特殊情况:

  • 1+G(s)H(s)=0 时,分母为零,可能导致系统不稳定。
  • 如果反馈是正反馈,公式会变成 T(s)=Gs1-HsGs​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值