控制系统开环与闭环传递函数关系推导

控制系统开环与闭环传递函数关系推导

在控制系统中,若系统不是单位负反馈,设其开环传递函数 G ( s ) H ( s ) G(s)H(s) G(s)H(s),其中 G ( s ) G(s) G(s) 为前向通道传递函数, H ( s ) H(s) H(s) 为反馈通道传递函数。系统的闭环传递函数 Φ ( s ) \Phi(s) Φ(s) 与开环传递函数的关系可通过以下推导得到。

系统结构分析

控制系统的结构如下图所示:

在这里插入图片描述

闭环传递函数推导

再将 E ( s ) E(s) E(s) 的表达式代入 C ( s ) = G ( s ) E ( s ) C(s) = G(s)E(s) C(s)=G(s)E(s)
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) \Phi(s) = \frac{G(s)}{1 + G(s)H(s)} Φ(s)=1+G(s)H(s)G(s)

这就是开环传递函数 G ( s ) H ( s ) G(s)H(s) G(s)H(s)闭环传递函数 Φ ( s ) \Phi(s) Φ(s) 的关系。

单位与非单位负反馈系统的区别

从推导可见:

  • 对于单位负反馈系统( H ( s ) = 1 H(s) = 1 H(s)=1),闭环传递函数分子与分母分别为 G ( s ) G(s) G(s) 1 + G ( s ) 1 + G(s) 1+G(s)
### MATLAB闭环传递函数开环传递函数的区别 在控制系统分析中,传递函数用于描述系统的输入输出关系。对于给定的系统,在MATLAB中的表示方式有所不同。 #### 开环传递函数 开环传递函数是指不考虑反馈的情况下,从控制器到被控对象之间的传递特性。通常情况下,开环传递函数 \( G(s) \) 可以直接给出或通过物理模型推导得出。例如: \[ G(s)=\frac{16}{s(s+1.6)} \] 此表达式代表了一个二阶单位负反馈系统的开环传递函数[^2]。 #### 闭环传递函数 当引入反馈机制后形成的闭合路径内的总增益称为闭环传递函数。它不仅取决于前向通道上的元件(即开环部分),还受到反馈的影响。假设存在一个简单的比例反馈,则闭环传递函数可按照以下公式计算: \[ T(s)=\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)H(s)} \] 其中\( H(s)\equiv1\) 对于单位负反馈而言;因此简化后的形式变为: \[ T(s)=\frac{\text{{numerator of }}G(s)}{\text{{denominator of }}G(s)+\text{{numerator of }}G(s)} \] 这表明了闭环传递函数是如何基于开环传递函数构建起来的[^1]。 ### 实现方法 为了更好地理解上述概念以及如何在MATLAB环境中实现这些功能,下面提供了一段具体的代码示例来展示如何创建并操作这两种类型的传递函数。 ```matlab % 定义变量 s syms s; % 创建开环传递函数 G(s) Gs=tf([16],[1 1.6 0]); % 显示开环传递函数 disp('Open-loop transfer function:'); disp(Gs); % 计算闭环传递函数 Ts (针对单位负反馈情况下的特例) Ts=feedback(Gs,1); % 这里第二个参数 '1' 表明是单位负反馈 % 显示闭环传递函数 disp('Closed-loop transfer function:'); disp(Ts); ``` 这段脚本首先定义了一个名为 `Gs` 的开环传递函数实例,并打印出来供查看。接着调用了内置命令 `feedback()` 来获取相应的闭环版本 `Ts` 并同样显示之。这里特别注意到了单位负反馈条件下,反馈系数取值为1的情况[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值