控制系统开环与闭环传递函数关系推导
在控制系统中,若系统不是单位负反馈,设其开环传递函数为 G ( s ) H ( s ) G(s)H(s) G(s)H(s),其中 G ( s ) G(s) G(s) 为前向通道传递函数, H ( s ) H(s) H(s) 为反馈通道传递函数。系统的闭环传递函数 Φ ( s ) \Phi(s) Φ(s) 与开环传递函数的关系可通过以下推导得到。
系统结构分析
控制系统的结构如下图所示:
闭环传递函数推导
再将 E ( s ) E(s) E(s) 的表达式代入 C ( s ) = G ( s ) E ( s ) C(s) = G(s)E(s) C(s)=G(s)E(s):
Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) \Phi(s) = \frac{G(s)}{1 + G(s)H(s)} Φ(s)=1+G(s)H(s)G(s)
这就是开环传递函数 G ( s ) H ( s ) G(s)H(s) G(s)H(s) 与闭环传递函数 Φ ( s ) \Phi(s) Φ(s) 的关系。
单位与非单位负反馈系统的区别
从推导可见:
- 对于单位负反馈系统( H ( s ) = 1 H(s) = 1 H(s)=1),闭环传递函数分子与分母分别为 G ( s ) G(s) G(s) 和 1 + G ( s ) 1 + G(s) 1+G(s)