卡尔曼滤波的几个公式之间的相互表示

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1(公式1)

K k = P k ∣ k H k T R k − 1 K_k=P_{k|k}H_k^TR_k^{-1} Kk=PkkHkTRk1(公式2)

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 [ I − K k H k ] T + K k R k K k T P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1}[I-K_kH_k]^T+K_kR_kK_k^T Pkk=[IKkHk]Pkk1[IKkHk]T+KkRkKkT(公式3)

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1} Pkk=[IKkHk]Pkk1(公式4)

P k ∣ k = [ P k ∣ k − 1 − 1 + H k T R k − 1 H k ] − 1 P_{k|k} = [P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k]^{-1} Pkk=[Pkk11+HkTRk1Hk]1(公式5)

由13推4

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1(公式1)

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 [ I − K k H k ] T + K k R k K k T P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1}[I-K_kH_k]^T+K_kR_kK_k^T Pkk=[IKkHk]Pkk1[IKkHk]T+KkRkKkT(公式3)

推出:

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1} Pkk=[IKkHk]Pkk1(公式4)

由公式3展开

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 − [ I − K k H k ] P k ∣ k − 1 [ K k H k ] T + K k R k K k T P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1}-[I-K_{k}H_{k}]P_{k|k-1}[K_kH_k]^T+K_kR_kK_k^T Pkk=[IKkHk]Pkk1[IKkHk]Pkk1[KkHk]T+KkRkKkT

即证明

[ I − K k H k ] P k ∣ k − 1 [ K k H k ] T − K k R k K k T = 0 [I-K_{k}H_{k}]P_{k|k-1}[K_kH_k]^T-K_kR_kK_k^T = 0 [IKkHk]Pkk1[KkHk]TKkRkKkT=0(式1.2)

由公式1可知

K k ( H k P k ∣ k − 1 H k T + R k ) = P k ∣ k − 1 H k T K_k(H_kP_{k|k-1}H_k^T+R_k)=P_{k|k-1}H_k^T Kk(HkPkk1HkT+Rk)=Pkk1HkT(式1.3)

(式1.3)左右两端同时乘以 K k T K_k^T KkT

K k ( H k P k ∣ k − 1 H k T + R k ) K k T = P k ∣ k − 1 H k T K k T K_k(H_kP_{k|k-1}H_k^T+R_k)K_k^T=P_{k|k-1}H_k^TK_k^T Kk(HkPkk1HkT+Rk)KkT=Pkk1HkTKkT(式1.4)

把(1.4)式带入(1.2)中

[ I − K k H k ] K k ( H k P k ∣ k − 1 H k T + R k ) K k T − K k R k K k T [I-K_{k}H_{k}]K_k(H_kP_{k|k-1}H_k^T+R_k)K_k^T-K_kR_kK_k^T [IKkHk]Kk(HkPkk1HkT+Rk)KkTKkRkKkT

我们可以发现 K k R k K k T K_kR_kK_k^T KkRkKkT项是可以约掉的所以先整理成下式子

[ I − K k H k ] ( K k H k P k ∣ k − 1 H k T K k T + K k R k K k T ) − K k R k K k T [I-K_{k}H_{k}](K_kH_kP_{k|k-1}H_k^TK_k^T+K_kR_kK_k^T)-K_kR_kK_k^T [IKkHk](KkHkPkk1HkTKkT+KkRkKkT)KkRkKkT

然后约掉 K k R k K k T K_kR_kK_k^T KkRkKkT

( K k H k P k ∣ k − 1 H k T K k T + K k R k K k T ) − K k R k K k T − K k H k ( K k H k P k ∣ k − 1 H k T K k T + K k R k K k T ) (K_kH_kP_{k|k-1}H_k^TK_k^T+K_kR_kK_k^T)-K_kR_kK_k^T-K_{k}H_{k}(K_kH_kP_{k|k-1}H_k^TK_k^T+K_kR_kK_k^T) (KkHkPkk1HkTKkT+KkRkKkT)KkRkKkTKkHk(KkHkPkk1HkTKkT+KkRkKkT)

( K k H k P k ∣ k − 1 H k T K k T ) − K k H k ( K k H k P k ∣ k − 1 H k T K k T + K k R k K k T ) (K_kH_kP_{k|k-1}H_k^TK_k^T)-K_{k}H_{k}(K_kH_kP_{k|k-1}H_k^TK_k^T+K_kR_kK_k^T) (KkHkPkk1HkTKkT)KkHk(KkHkPkk1HkTKkT+KkRkKkT)

提出公共项

K k H k [ ( P k ∣ k − 1 H k T K k T ) − ( K k H k P k ∣ k − 1 H k T K k T + K k R k K k T ) ] K_kH_k[(P_{k|k-1}H_k^TK_k^T)-(K_kH_kP_{k|k-1}H_k^TK_k^T+K_kR_kK_k^T)] KkHk[(Pkk1HkTKkT)(KkHkPkk1HkTKkT+KkRkKkT)]

再提出公共项

K k H k [ ( P k ∣ k − 1 H k T ) − ( K k H k P k ∣ k − 1 H k T + K k R k ) ] K k T K_kH_k[(P_{k|k-1}H_k^T)-(K_kH_kP_{k|k-1}H_k^T+K_kR_k)]K_k^T KkHk[(Pkk1HkT)(KkHkPkk1HkT+KkRk)]KkT(公式1.5)

再来回顾下

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1(公式1)的变形

K k ( H k P k ∣ k − 1 H k T + R k ) = P k ∣ k − 1 H k T K_k(H_kP_{k|k-1}H_k^T+R_k)=P_{k|k-1}H_k^T Kk(HkPkk1HkT+Rk)=Pkk1HkT(式1.3)

将公式1.3带入到公式1.5中

可以发现公式1.5完美的为0,也就证明式子1.2是成立的,也就是说可以由1 3 推出公式4

由1 4推5

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1(公式1)

P k ∣ k = [ I − K k H k ] P k ∣ k − 1 P_{k|k} = [I-K_{k}H_{k}]P_{k|k-1} Pkk=[IKkHk]Pkk1(公式4)

推出

P k ∣ k = [ P k ∣ k − 1 − 1 + H k T R k − 1 H k ] − 1 P_{k|k} = [P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k]^{-1} Pkk=[Pkk11+HkTRk1Hk]1(公式5)

由把公式1直接带入公式4中可得

P k ∣ k = [ I − P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 H k ] P k ∣ k − 1 P_{k|k} = [I-P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1}H_{k}]P_{k|k-1} Pkk=[IPkk1HkT(HkPkk1HkT+Rk)1Hk]Pkk1(公式2.1)

引入矩阵逆引理并把公式5用矩阵逆引理打开

P k ∣ k = [ P k ∣ k − 1 − 1 + H k T R k − 1 H k ] − 1 P_{k|k} = [P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k]^{-1} Pkk=[Pkk11+HkTRk1Hk]1(公式5)

( A + B C D ) − 1 = A − 1 − A − 1 B ( C − 1 + D A − 1 B ) − 1 D A − 1 (A+BCD)^{-1} = A^{-1}-A^{-1}B(C^{-1}+DA^{-1}B)^{-1}DA^{-1} (A+BCD)1=A1A1B(C1+DA1B)1DA1

( P k ∣ k − 1 − 1 + H k T R k − 1 H k ) − 1 = P k ∣ k − 1 − P k ∣ k − 1 H k T ( R k + H k P k ∣ k − 1 H k T ) − 1 H k P k ∣ k − 1 (P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k)^{-1} = P_{k|k-1}-P_{k|k-1}H_k^T(R_k+H_kP_{k|k-1}H_k^T)^{-1}H_kP_{k|k-1} (Pkk11+HkTRk1Hk)1=Pkk1Pkk1HkT(Rk+HkPkk1HkT)1HkPkk1(式2.2)

则证明公式1和公式4推出公式5可转化为公式1和公式4推出式2.2的问题
且公式2.1(把公式1带入公式4中得到的)等于式2.2所以综上1、4可以推出5
证毕

由1 5推2

K k = P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=Pkk1HkT(HkPkk1HkT+Rk)1(公式1)

P k ∣ k = [ P k ∣ k − 1 − 1 + H k T R k − 1 H k ] − 1 P_{k|k} = [P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k]^{-1} Pkk=[Pkk11+HkTRk1Hk]1(公式5)

推出

K k = P k ∣ k H k T R k − 1 K_k=P_{k|k}H_k^TR_k^{-1} Kk=PkkHkTRk1(公式2)
证明:

K k = [ P k ∣ k P k ∣ k − 1 ] P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=[P_{k|k}P_{k|k}^{-1}]P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=[PkkPkk1]Pkk1HkT(HkPkk1HkT+Rk)1(公式3.3)

带入公式5

K k = [ P k ∣ k [ P k ∣ k − 1 − 1 + H k T R k − 1 H k ] ] P k ∣ k − 1 H k T ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=[P_{k|k} [P_{k|k-1}^{-1}+H_k^TR_k^{-1}H_k]]P_{k|k-1}H_k^T(H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=[Pkk[Pkk11+HkTRk1Hk]]Pkk1HkT(HkPkk1HkT+Rk)1

化简得到

K k = P k ∣ k H k T [ I + R k − 1 H k P k ∣ k − 1 H k T ] ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k}H_k^T [I+R_k^{-1}H_kP_{k|k-1}H_k^T](H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=PkkHkT[I+Rk1HkPkk1HkT](HkPkk1HkT+Rk)1

提出一个 R k − 1 R_k^{-1} Rk1

K k = P k ∣ k H k T R k − 1 [ R + H k P k ∣ k − 1 H k T ] ( H k P k ∣ k − 1 H k T + R k ) − 1 K_k=P_{k|k}H_k^T R_k^{-1}[R+H_kP_{k|k-1}H_k^T](H_kP_{k|k-1}H_k^T+R_k)^{-1} Kk=PkkHkTRk1[R+HkPkk1HkT](HkPkk1HkT+Rk)1

所以成立
K k = P k ∣ k H k T R k − 1 [ R K_k=P_{k|k}H_k^T R_k^{-1}[R Kk=PkkHkTRk1[R

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值