基于torchvision的数据集CIFAR10,进行卷积神经网络的架构设计,持续更新中

最近,芒果在研究卷积神经网络,针对于CIFAR10这个数据集,进行实现图像分类

  1. 搭建卷积神经网络
  2. 编写训练函数
  3. 编写预测函数

下面上代码,后面持续更新中…

import time
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
from torchsummary import summary
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torch.utils.data import DataLoader

BATCH_SIZE = 8


def create_dataset():
    """
    获取训练集,测试集
    :return:
    """
    train_dataset = CIFAR10(root='./data', train=True, transform=ToTensor(), download=True)
    test_dataset = CIFAR10(root='./data', train=False, transform=ToTensor(), download=True)
    return train_dataset, test_dataset


# 创建图像卷积神经网络类
class ImgCnnClass(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=3)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.linear1 = nn.Linear(576, 120)
        self.linear2 = nn.Linear(120, 84)
        self.output = nn.Linear(84, 10)

    def forward(self, x):
        # 卷积 + relu + 池化
        x = torch.relu(self.conv1(x))
        x = self.pool1(x)
        # 卷积 + relu + 池化
        x = self.pool2(torch.relu(self.conv2(x)))
        # 参1 样本数  参2 列
        x = x.reshape(x.size(0), -1)
        # 全连接层
        x = torch.relu(self.linear1(x))
        x = torch.relu(self.linear2(x))
        x = self.output(x)  # 后续使用CrossEntropyLoss()损失函数,不需要进行softmax操作
        return x


def train(model, train_dataset):
	pass


def evaluate(model, test_dataset):
	pass


if __name__ == '__main__':
    train_dataset, test_dataset = create_dataset()

    img_model = ImgCnnClass()

    train(img_model, train_dataset)

    evaluate(img_model, test_dataset)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值