from sklearn import svm
import numpy as np
import csv
def nor(ll):
nmax = max(ll)
nmin = min(ll)
ranges = nmax-nmin
for i in range (0,len(ll)):
ll[i]=(ll[i]-nmin)/ranges
def normalize(lst):
tt = []
for i in range(0,10):
temp = []
for j in range(0,len(lst)):
temp.append(lst[j][i])
nor(temp)
t
import numpy as np
import csv
def nor(ll):
nmax = max(ll)
nmin = min(ll)
ranges = nmax-nmin
for i in range (0,len(ll)):
ll[i]=(ll[i]-nmin)/ranges
def normalize(lst):
tt = []
for i in range(0,10):
temp = []
for j in range(0,len(lst)):
temp.append(lst[j][i])
nor(temp)
t