【机器学习案例八】股票投资中均线策略的应用

案例背景

数据集 SH50 给出了上证 50 指数从 2005 年 1 月 1 日至 2019 年 5 月10 日的股价数据,包括日期(date)、开盘价(open)、最高价(high)、最低价(low)、收盘价(close)、成交量(vol)。请建立模型对指数未来 5 日走势进行预测,如果未来五天平均价格变化 ≥ 1.5%,则记为“看涨”;未来五天股票平均价格变化 ≤-1.5%,记为“看跌”;其余情况记为“震荡”。根据历史数据预测未来五天股票价格的走势

数据预处理

导入基本库
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt

读取数据
df=pd.read_csv('sh50.csv')
  • 将每天的收盘价进行可视化
close=list(df.close)
plt.plot(close)

在这里插入图片描述

构造label
  • 构造依据
    原始数据中没有看涨或者看跌这样的数据的,需要自己根据历史数据构造,若未来五日的股票的平均价格是当前价格的1.015倍,那么标为看涨股票。若未来五日的股票的平均价格是当前价格的0.985倍,那当前标为看跌。其他情况视为震荡。
  • 定义函数
def make_label(*x):
    labels=[]
    for i in range(len(x)-5):
        if  (sum(x[i+1:i+6])/5.0)/x[i] - 1 > 0.015:
            labels.append('看涨')
        elif (sum(x[i+1:i+6])/5.0)/x[i] - 1 < -0.015:
            labels.append('看跌')
        else:
            labels.append('震荡')
    return labels
  • 将构造的标签添加到原始数据中
labels=make_label(*close)
df=df.iloc[:-5,:]
df['label']=labels

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值