图像处理时常见的L1-normalize 和L2-normalize是什么

当一幅图像用某种特征表示出来,一般要进行L1-normalize或者是L2-normalize。

假设一幅图像表示为Y=[x1 x2 x3 x4 x5],

L1-normalize的结果为:
在这里插入图片描述
L2-normalize的结果为:
在这里插入图片描述
通过L1或L2标准化的图像特征往往具有良好的效果。

顺便提一下tensorflow中 l2_normalize函数的实现:
tf.nn.l2_normalize(x, dim, epsilon=1e-12, name=None)

解释:这个函数的作用是利用 L2 范数对指定维度 dim 进行标准化。

比如,对于一个一维的张量,指定维度 dim = 0,那么计算结果为:

output = x / sqrt( max( sum( x ** 2 ) , epsilon ) )

假设 x 是多维度的,那么标准化只会独立的对维度 dim 进行,不会影响到别的维度。
import tensorflow as tf

a=tf.constant([[1,1],[2,2],[3,3]],dtype=tf.float32)

with tf.Session() as sess:
print(sess.run(tf.nn.l2_normalize(a, [0])))
sess.close()

输出结果:

[[ 0.26726124 0.26726124]
[ 0.53452247 0.53452247]
[ 0.80178368 0.80178368]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41813620

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值