模型评价指标----准确率、精准率、召回率、F1、ROC曲线、AUC曲线

1、精确率(Precision)与召回率(Recall)

精确率(Precision)与召回率(Recall)
True positives(TP) : 正样本被正确识别为正样本;预测为positive ground truth为positive。
True negatives: 负样本被正确识别为负样本; 预测为negative 但ground truth 为negative。
False positives: 假的正样本,即负样本被错误识别为正样本; 预测为positive,ground truth 为negative
False negatives: 假的负样本,即正样本被错误识别为负样本;预测为negative,ground truth为positive。
precision精确率(查准率): 所有被预测为正的样本中实际为正的样本的概率,该值越大越好,1为理想状态,其公式如下:查准率=TP/(TP+FP)
recall召回率(查全率):指测试集中所有正样本样例中,被正确识别为正样本的比例。该值越大越好,1为理想状态。其公式如下:召回率=TP/(TP+FN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值