Transformer中tokenizer的使用:分词、token_id与token转换

该博客介绍了如何利用transformers库中的BertTokenizer对中文文本进行分词,包括添加特殊标记和填充操作,以便于后续的注意力可视化。同时,对比了不包含填充和特殊标记的简单分词方式。内容适合于自然语言处理和深度学习的实践者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们使用transformer中的tokenizer进行分词,如何获得分词后的句子呢?

from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
text = '今天是个好天气,我们可以出去走走。'
token_ids = tokenizer.encode(text, max_length = 30, add_special_tokens = True, padding = 'max_length', truncation = True)
# [101, 791, 1921, 3221, 702, 1962, 1921, 3698, 8024, 2769, 812, 1377, 809, 1139, 1343, 6624, 6624, 511, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

tokened_text = tokenizer.convert_ids_to_tokens(token_ids)
# ['[CLS]', '今', '天', '是', '个', '好', '天', '气', ',', '我', '们', '可', '以', '出', '去', '走', '走', '。', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

这样,我们得到的 token_ids 和  tokened_text 是同样维度的,如果后续需要文本attention可视化,这样做会方便很多

当然,如果只是为了分词,也可以这样做:

tokened_text = tokenizer.tokenize(text)
# ['今', '天', '是', '个', '好', '天', '气', ',', '我', '们', '可', '以', '出', '去', '走', '走', '。']

只不过这样得到的分词,是不包含padding部分,以及special token的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值