目录
一、摘要
本文就机械手抓取领域手眼标定技术的常规方案、技术原理、涉及的相关基础理论进行描述。
二、介绍
机器人的视觉系统分为固定场景视觉系统和运动的【手-眼】视觉系统。根据摄像头的安装位置不同,手眼系统分为Eye-in-Hand系统和Eye-to-Hand系统。Eye-in-Hand系统中,摄像头安装在机械手末端,机械手运动时,摄像头随之一起运动。Eye-to-Hand系统中,摄像头安装在机械手以外的一个固定位置,机械手运动时,不会随之一起运动。
手眼标定方法通常分为3类:标准手眼标定、基于旋转运动的手眼标定以及在线手眼标定。这些方法是将手眼标定和摄像头标定分开进行的,有的文章采用联合标定方法。
本文就标准手眼标定的基本原理进行阐述。
三、原理分析
3.1 Eye-to-Hand系统
{B} 表示机械手基坐标系;
{E} 表示机械手末端坐标系;
{K} 表示标定板坐标系;
{C} 表示相机坐标系;
A 表示机械手末端坐标系到机械手基坐标系转换关系,数学描述为:{B} = A{E},此关系可由机械手的示教器读取 ;
B 表示标定板坐标系到机械手末端坐标系转换关系,数学描述为:{E} = B{K},此关系是固定不变的,且未知;
C 表示相机坐标系到标定板坐标系转换关系,数学描述为:{K} = C{C},此关系可基于相机内参由pnp算法解算;
D 表示相机坐标系到机械手基坐标系转换关系,数学描述为:{B} = D{C},此关系为手眼标定待求量;
由上述关系可得D = ABC,而实际标定过程中,需要控制机械手带着标定板在不同姿态下拍照,因此可得:
从上面公式(以两个姿态下的公式推到)中可以看出,矩阵的运算可归结为方程AX=XB,其中X即是我们所需要求的变换矩阵。
同理,将N个姿态下得到的数据组合后,可得到一个AX=XB的方程组。