LLAMA3中文语料 fine tune 测试与比对

概述:

Meta开发并发布了Meta-Lama 3大语言模型家族(LLM),Llama 3指令调优模型针对对话用例进行了优化,在常见的行业基准上优于许多可用的开源聊天模型。本文尝试对LLAMA3 在中文语料中尝试进行fine tune 为后续对 通义千问的模型进行比较。

代码实现:

加载依赖

from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    GenerationConfig
)
from tqdm import tqdm
from trl import SFTTrainer
import torch
import time
import pandas as pd
import numpy as np
from huggingface_hub import interpreter_login
from datasets import Dataset, DatasetDict
from functools import partial
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import os
# 禁用权重和偏差
os.environ['WANDB_DISABLED']="true"

数据加载

git clone https://www.modelscope.cn/datasets/DAMO_NLP/lcsts_test_set.git

data_train_pth ='../Fine-tune/data/lcsts_test_set/{}'.format('train.csv')
data_train = pd.read_csv(data_train_pth)

data_test_pth = '../Fine-tune/data/lcsts_test_set/{}'.format('test.csv')
data_test = pd.read_csv(data_test_pth)

print(data_train.shape)
print(data_test.shape)

#这里看到原本的训练集合很大 减少部分的训练集以便更快的看到结果
data_train = data_train.head(2000)

data_train = Dataset.from_pandas(data_train)
data_test = Dataset.from_pandas(data_test)

print(data_train)

(100000, 2)
(725, 2)

Dataset({
features: [‘text1’, ‘text2’],
num_rows: 2000
})

模型加载

compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type='nf4',
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=False,
    )
model_name=r'D:\临时模型\Meta-Llama-3-8B-Instruct'
device_map = {"": 0}
original_model = AutoModelForCausalLM.from_pretrained(model_name, 
                                                      device_map=device_map,
                                                      quantization_config=bnb_config,
                                                      trust_remote_code=True,
                                                      use_auth_token=True)


tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True,padding_side="left",add_eos_token=True,add_bos_token=True,use_fast=False)
tokenizer.pad_token = tokenizer.eos_token

数据预处理

#处理的是中文,所以添加中文的提示工程
def create_prompt_formats(sample):
    """
    格式化示例的各个字段('instruction','output')
    然后使用两个换行符将它们连接起来
    :参数sample:样本字典
    """
    ROLE_PROMPT = "你是一个文本记录员,擅长归纳文章的内容。"#校色说明
    INTRO_BLURB = " 需要将了解到的内容进行总结概括并输出。尽可能用最少得字来完事内容的概述"#任务简介
    INSTRUCTION_KEY = "### 要求:总结以下对话。"
    RESPONSE_KEY =  "### 总结:"
    END_KEY = "### 结束"
    
    blurb = f"\n{INTRO_BLURB}"
    instruction = f"{INSTRUCTION_KEY}"
    input_context = f"{sample['text1']}" if sample["text1"] else None
    response = f"{RESPONSE_KEY}\n{sample['text2']}"
    end = f"{END_KEY}"
    
    parts = [part for part in [blurb, instruction, input_context, response, end] if part]

    formatted_prompt = "\n\n".join(parts)
    sample["text"] = formatted_prompt

    return sample

def get_max_length(model):
    conf = model.config
    max_length = None
    for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:
        max_length = getattr(model.config, length_setting, None)
        if max_length:
            print(f"Found max lenth: {max_length}")
            break
    if not max_length:
        max_length = 1024
        print(f"Using default max length: {max_length}")
    return max_length

def preprocess_batch(batch, tokenizer, max_length):
    """
    token处理
    """
    return tokenizer(
        batch["text"],
        max_length=max_length,
        truncation=True,
    )
    
def preprocess_dataset(tokenizer: AutoTokenizer, max_length: int,seed, dataset):
    """
    格式化并标记它,以便为培训做好准备
    参数标记器(AutoTokenizer):模型标记器
    :param max_length (int):从标记器发出的标记的最大数量
    """
    
    # 在每个示例中添加提示
    print("开始数据预处理...")
    dataset = dataset.map(create_prompt_formats)#, batched=True)
    
    # 对每一批数据集&进行预处理
    _preprocessing_function = partial(preprocess_batch, max_length=max_length, tokenizer=tokenizer)
    dataset = dataset.map(
        _preprocessing_function,
        batched=True,
        remove_columns=['text1', 'text2'],
    )

    # 过滤掉input_ids超过max_length的样本
    dataset = dataset.filter(lambda sample: len(sample["input_ids"]) < max_length)
    
    # 打乱数据
    dataset = dataset.shuffle(seed=seed)

    return dataset
## 开始处理数据
max_length = get_max_length(original_model)
print(max_length)

seed=123

train_data = preprocess_dataset(tokenizer, max_length,seed, data_train)
eval_data = preprocess_dataset(tokenizer, max_length,seed, data_test)

Found max lenth: 8192
8192

模型参数调整

output_dir = f'./LLAMA_peft-dialogue-summary-training-{str(int(time.time()))}'
peft_config = LoraConfig(
        lora_alpha=16, 
        lora_dropout=0.1,
        r=64,
        bias="none",
        #target_modules="all-linear",
        task_type="CAUSAL_LM",
        #inplace=False,
        target_modules=[
            'q_proj',
            'k_proj',
            'v_proj',
            'dense'
    ],
)




training_arguments = TrainingArguments(
    output_dir=output_dir,                    # 保存训练日志和检查点的目录
    num_train_epochs=5,                       # 为其训练模型的历元数。一个epoch通常指的是通过整个训练数据集一次的前向传播和反向传播过程。
    #num_train_epochs 被设置为3,意味着模型将完整地遍历训练数据集3次。
    per_device_train_batch_size=1,            # 每个设备上每个批次的样本数。
    gradient_accumulation_steps=8,            #  执行向后/更新过程之前的步骤数
    gradient_checkpointing=True,              # 使用渐变检查点保存内存
    optim="paged_adamw_8bit",                 #"paged_adamw_8bit"/"paged_adamw_32bit" 用于训练模型的优化器
    save_steps=400,
    logging_steps=400,                         # 记录训练指标的步骤数。它被设置为50,意味着每50个训练步骤,训练指标将被记录一次。
    learning_rate=2e-4,                       # 学习率
    weight_decay=0.001,
    fp16=True,
    bf16=False,
    max_grad_norm=0.3,                        # 基于QLoRA的最大梯度范数
    max_steps=2000, #1000,                     #这个建议设置上,不然会出现很多次的训练轮
    warmup_ratio=0.03,                        # 基于QLoRA的预热比
    group_by_length=True,
    lr_scheduler_type="cosine",               # 使用余弦学习率调度
    report_to="tensorboard",                  # 向tensorboard报告指标  可选"none"
    evaluation_strategy="epoch",               # 每个纪元保存检查点 可选"steps" 这个参数设置了评估策略。
    #代码中设置为"epoch",意味着评估将在每个epoch结束后进行。由于eval_steps也设置为50,这可能意味着评估将在每50个训练步骤或每个epoch
    #warmup_steps = 1
    #logging_dir="./logs",
    #save_strategy="steps",
    eval_steps=200,#意味着每50个训练步骤,模型将在验证集上进行一次评估。
    do_eval=True,
    overwrite_output_dir  =True
)
"""
上述参数,模型将在以下情况下停止训练:

完成3个epoch的训练,无论eval_steps条件是否满足。
如果训练数据集的大小导致在3个epoch内无法达到50个训练步骤,那么模型将在完成所有训练步骤后停止。
至于评估输出,由于logging_steps和eval_steps都设置为50,这意味着:

每50个训练步骤,训练指标将被记录一次。
每50个训练步骤,模型将在验证集上进行一次评估。
"""


#training_arguments.config.use_cache = False
#transformers.Trainer
"""
transformers.Trainer:如果你有一个大的数据集,并且需要为你的培训循环或复杂的培训工作流程进行广泛的定制。
使用SFTTrainer:如果你有一个预训练的模型和相对较小的数据集,并且想要更简单、更快的微调体验和高效的内存使用。

如果训练数据集较小,可能导致在每个epoch中训练步骤数少于50步,那么eval_steps条件可能不会触发,评估将在每个epoch结束后根据evaluation_strategy参数的设置进行。

另外,max_steps参数通常用于设置训练的最大步骤数,以防止训练超过预定的epoch数。
代码中,max_steps被设置为1000,这个值远大于由num_train_epochs和per_device_train_batch_size参数隐式定义的训练步骤数。
因此,除非训练数据集非常大,否则这个参数在上下文中可能不会起作用。
如果max_steps的值大于完成所有epoch所需步骤数的总和,训练将在完成所有epoch后停止,而不是在达到max_steps指定的步骤数时停止。
"""
trainer = SFTTrainer(
    model=original_model,
    args=training_arguments,#
    train_dataset=train_data,
    eval_dataset=eval_data,
    peft_config=peft_config,# 模型配置文件
    dataset_text_field="text",
    tokenizer=tokenizer,
    max_seq_length=1024,
    packing=False,
    dataset_kwargs={
        "add_special_tokens": False,
        "append_concat_token": False,
    }
)

"""
#可选
trainer = transformers.Trainer(
    model=peft_model,
    train_dataset=train_data,
    eval_dataset=eval_data,
    args=training_arguments,
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
"""

output_dir ( str) – 将写入模型预测和检查点的输出目录。

overwrite_output_dir(bool,可选,默认为False) – 如果为True,则覆盖输出目录的内容。如果output_dir指向检查点目录,请使用它继续训练 。

do_train ( bool,可选, 默认为False) – 是否运行训练。

do_eval ( bool,可选, 默认为False) – 是否在开发集上运行评估。

do_predict ( bool,可选, 默认为False) – 是否在测试集上运行预测。

evaluate_during_training (bool,可选,默认为False) – 是否在每个记录步骤的训练期间运行评估。

per_device_train_batch_size ( int,可选,默认为 8)– 用于训练的每个 GPU/TPU 核心/CPU 的批量大小。

per_device_eval_batch_size(int,可选,默认为 8) – 用于评估的每个 GPU/TPU 核心/CPU 的批处理大小。

gradient_accumulation_steps – (int,可选,默认为 1):在执行向后/更新传递之前累积梯度的更新步骤数。

Learning_rate ( float,可选,默认为 5e-5) – Adam 的初始学习率。

Weight_decay ( float,可选,默认为 0) – 要应用的权重衰减(如果不为零)。

adam_epsilon ( float,可选,默认为 1e-8) – Adam 优化器的 Epsilon。

max_grad_norm ( float,可选,默认为 1.0) – 最大梯度范数(用于梯度裁剪)。

num_train_epochs ( float,可选,默认为 3.0) – 要执行的训练周期总数。

max_steps ( int,可选,默认为 -1) – 如果设置为正数,则为要执行的训练步骤总数。覆盖 num_train_epochs.

Warmup_steps ( int,可选,默认为 0) – 用于线性预热的步数,从 0 到learning_rate。

logging_dir ( str,可选) – Tensorboard 日志目录。默认为运行/CURRENT_DATETIME_HOSTNAME。

logging_first_step ( bool,可选, 默认为False) – 是否记录并评估第一个global_step。

logging_steps ( int,可选,默认为 500) – 两个日志之间的更新步骤数。

save_steps ( int,可选,默认为 500) – 两次检查点保存之前的更新步骤数。

save_total_limit ( int,可选) – 如果传递一个值,将限制检查点的总数。删除 中较旧的检查点 output_dir。

no_cuda(bool,可选,默认为False) – 是否不使用 CUDA,即使它可用或不可用。

seed(int,可选,默认为 42) – 用于初始化的随机种子。

fp16(bool,可选,默认为False) – 是否使用 16 位(混合)精度训练(通过 NVIDIA apex)而不是 32 位训练。

fp16_opt_level(str,可选,默认为 'O1') – 对于fp16训练,在 [‘O0’、‘O1’、‘O2’ 和 ‘O3’] 中选择顶点 AMP 优化级别。请参阅apex 文档的详细信息。

local_rank ( int,可选, 默认为 -1)– 在分布式训练期间,进程的排名。

tpu_num_cores ( int,可选) – 在 TPU 上训练时,TPU 核心的数量(由启动器脚本自动传递)。

debug ( bool,可选,默认为False) – 在 TPU 上训练时,是否打印调试指标。

dataloader_drop_last ( bool,可选, 默认为False) – 是否删除最后一个不完整的批次(如果数据集的长度不能被批次大小整除)。

eval_steps ( int,可选,默认为 1000) – 两次评估之间的更新步骤数。

past_index ( int,可选,默认为 -1) – TransformerXL或 :docXLNet <…/model_doc/xlnet> 等模型可以利用过去的隐藏状态进行预测。如果此参数设置为正整数,则将 Trainer使用相应的输出(通常为索引 2)作为过去状态,并在关键字参数下的下一个训练步骤中将其馈送到模型mems。

模型运行

trainer.train()
#模型保存
trainer.save_model()
#保存token
tokenizer.save_pretrained(output_dir)

在这里插入图片描述
效果不非常理想。测试集上基本没有下降。

人工测试

模型保存

import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer,BitsAndBytesConfig

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#路径是输出的模型路径
finetuned_model = "F:\python_code\AIGC\Finetune\LLAMA_peft-dialogue-summary-training-1715510377\checkpoint-250"
compute_dtype = getattr(torch, "float16")
tokenizer = AutoTokenizer.from_pretrained(r"D:\临时模型\Meta-Llama-3-8B-Instruct")

bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type='nf4',
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=False,
    )

model = AutoPeftModelForCausalLM.from_pretrained(
     finetuned_model,
     torch_dtype=compute_dtype,
     quantization_config=bnb_config,
     return_dict=False,
     low_cpu_mem_usage=True,
     device_map=device,
)

merged_model = model.merge_and_unload()

merged_model.save_pretrained("./merged_summary_model_3",safe_serialization=True, max_shard_size="2GB")
tokenizer.save_pretrained("./merged_summary_model_3")

比对测试

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig
#from transformers import
import time
import pandas as pd
from datasets import Dataset

compute_dtype = getattr(torch, "float16")
bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type='nf4',
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=False,
    )


model_name=r'F:\python_code\AIGC\Finetune\merged_summary_model_3'
#model_name=r'D:\临时模型\Meta-Llama-3-8B-Instruct'

device_map = {"": 0}
original_model = AutoModelForCausalLM.from_pretrained(model_name, 
                                                      device_map=device_map,
                                                      quantization_config=bnb_config,
                                                      trust_remote_code=True,
                                                      use_auth_token=True)


tokenizer = AutoTokenizer.from_pretrained(model_name,trust_remote_code=True,padding_side="left",add_eos_token=True,add_bos_token=True,use_fast=False)
tokenizer.pad_token = tokenizer.eos_token


data_test_pth = '../Fine-tune/data/lcsts_test_set/{}'.format('test.csv')
data_test = pd.read_csv(data_test_pth)
data_test = Dataset.from_pandas(data_test)

seed = 123

def gen(model,p, maxlen=100, sample=True):
    toks = tokenizer(p, return_tensors="pt") #token转换
    #构建模型的对话摸索
    res = model.generate(**toks.to("cuda"), max_new_tokens=maxlen, do_sample=sample,num_return_sequences=1,temperature=0.1,num_beams=1,top_p=0.95,).to('cpu')
    return tokenizer.batch_decode(res,skip_special_tokens=True)



from transformers import set_seed
seed = 42
set_seed(seed)

index = 10

prompt = data_test[index]['text1']
summary = data_test[index]['text2']

#指导:总结以下对话。\n{prompt}\n输出:\n
formatted_prompt = f"总结以下对话.并使用中文回答\n{prompt}\n总结:\n"

#输入模型 提示词 ,maxlen
res = gen(original_model,formatted_prompt,100,)


#print(res[0])
output = res[0].split('\n')[3]
dash_line = '-'.join('' for x in range(100))#分割符
print(dash_line)
print(f'输入提示词:\n{formatted_prompt}')
print(dash_line)
print(f'目标值:\n{summary}\n')
print(dash_line)
print(f'模型输出:\n{output}')

PEFT结果

在这里插入图片描述

原始模型结果

在这里插入图片描述
感觉和没有训练过的模型输出基本一致。还是需要使用中文类型的模型进行fine tune。
以上是本文的全部内容。

  • 26
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为了将Llama模型进行fine-tuning以理解中文,你需要按照以下步骤进行操作: 1. 准备数据集:首先,你需要准备一个中文的对话数据集,其中包含了问题和对应的回答。数据集应该是已经清洗和预处理过的,并且按照一定的格式进行组织,比如每行一个问题和对应的回答。 2. 安装依赖:确保你已经安装了相关的依赖库,包括transformers和torch。 3. 加载预训练模型:使用transformers库加载Llama模型的预训练权重。你可以从Hugging Face的模型库中下载预训练权重。 4. 数据处理:将你准备好的中文对话数据集转换为适合fine-tuning的格式。你需要将文本转换为token IDs,并根据需要进行截断或填充。 5. 创建模型:根据预训练模型的配置和你的任务需求,创建一个新的Llama模型。你可以根据自己的需求添加额外的层或修改模型结构。 6. 设置训练参数:根据你的需求,设置fine-tuning的训练参数,例如学习率、batch size等。 7. 训练模型:使用准备好的数据集和设置好的训练参数,开始训练模型。在每个epoch结束后,评估模型的性能并保存最佳的模型权重。 8. 测试模型:使用测试集对训练好的模型进行评估,并根据需要进行调整和改进。 9. 部署模型:将训练好的模型部署到你的应用程序或服务中,以便进行中文对话理解的任务。 需要注意的是,fine-tuning Llama模型可能需要大量的计算资源和时间。确保你有足够的计算资源和合理的时间规划来完成训练过程。另外,还可以尝试使用更大的数据集或其他技术(如数据增强)来提高模型性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值