做脑磁共振影像数据处理不得不看的几本书

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》

医学影像技术的发展极大地促进通过非侵入型的方法对人脑结构和功能的进一步了解。核磁共振技术发源于1946年斯坦福大学的Flelix Bloch教授和哈佛大学的Edward Purcell教授领导的两个研究小组各自独立的发现了核磁共振现象,两位教授也凭借这一重大发现,共同分享了1952年的诺贝尔物理学奖。而后,磁共振成像技术基于这一物理现象发展起来。在1972年,Paul Lauterbur 教授发展出一套对核磁共振信号进行空间编码的方法,并第一个用水模采集了第一幅由磁共振成像的二维图像,即自旋密度成像法,证明这种技术可以用作人体成像。随着核磁技术的发展,到今天已经可以为研究者提供多模态、高空间分表率以及有着一定时间分辨率的人脑空间图像,也极大地促进了脑科学的发展。但是脑影像数据的处理和分析涉及到多个学科,要求研究者掌握基础物理、统计学、概率论、编程语言及人体解剖学等各学科的知识,对学科交叉能力有着很强的要求。幸运的是,处理数据的软件为我们提供了极大地便利,而我们通过对一些综合性知识介绍较为透彻的书籍就可以较为快速的对脑磁数据和处理方法有更为直观地理解,并以此为基础进一步深入。本次,小编就为您整理几本基础的脑磁数据理解和分析方法的书籍,以供您参考。

Handbook of functional MRI Data Analysis
在这里插入图片描述
这本手册是美国著名的Russell A. Poldrack教授所著,他是美国著名的心理学家和神经学家。目前是斯坦福大学的心理学教授,斯坦福神经科学研究所成员和斯坦福再生神经科学中心主任。这本书可以说是功能磁共振的入门级读物了,在这本书的开始详略得当的介绍了磁共振技术的发展和基本原理。其后是针对核磁数据处理分析的步骤进行详细的解释,同时介绍了不同的数据分析软件(以SPM和FSL为主)对于功能磁共振数据预处理的理解,解释了如头动处理、图像配准以及时间层矫正等多个预处理阶段遇到的问题,以及对该如何进行选择提供了一些建议。并且,在书的最后介绍了一些新出现的核磁数据处理方法(相对新,因为本书出版时,这些技术还应用不久),如独立成立分析、基于体素水平的MVPA方法等。这本书目前国内有翻译本,由马园林,张辉,陈峰翻译,翻译本基本还原了原著,读起来也不晦涩,是初次了解功能磁共振数据及其处理的上佳选择。

核磁共振原理及实验方法(高汉宾 张振芳)
在这里插入图片描述
这本书由中科院武汉物理与数学研究所的高级研究员张振芳和高汉宾主编,作为中文撰写的核磁共振类的数据可以作为一本入门读物。这本书的前五章介绍了基础的核磁知识,由于是由物理研究所撰写的,这本书更加偏向于核磁的成像原理、成像序列、核磁共振谱仪等方面,对于脑磁数据来说不是非常相关。但是这本书中综合了使用核磁技术的实验方法,在书中有一些相应的实验设计案例以及讲解,有助于了解核磁实验设计的基本知识。在书的后几章节,还分析了84个脉冲序列,可以说是核磁操作员的心头之物了。

Networks of the Brain (Olaf Sporns )
在这里插入图片描述
脑网络的构建和数据分析近年来受到热捧,大量研究开始向脑网络方向发展。无论基于灰质皮层的结果共变网络,还是基于白质的DTI网络,亦或是基于静息态数据的功能网络和基于任务态数据的功能网络。对于这些网络的分析都离不开对“网络”这个概念的理解以及对脑网络的有效理解。Olaf Sporns教授是印第安纳大学心理学和脑科学中心的教授,也是印第安纳大学网络科学研究所的科学主任之一。同时,他也是由麻省理工学院出版社出版的学术期刊——《网络神经科学》的创始编辑。他是脑网络概念的重要提出者和脑网络发展的重要研究人员,他所领导的团队构建出了首张完整的高清晰度人类大脑皮层地图。这本书目前没有翻译版本,只能辛苦研究者自己读了。推荐对脑磁数据及处理方法已经有一定了解的读者参考,因为书中主要集中在对脑网络基础概念的界定以及对不同类型的脑网络的介绍和讨论,同时还强调了网络如何连接大脑中的组织层次,以及它们如何将结构与功能联系起来,为这一主题提供了一种非正式的、非数学的处理方法。

Introduction to Diffusion Tensor Imaging
在这里插入图片描述
DTI技术作为重要的脑结构成像技术,自出现以后就受到众多的关注。尽管在初期由于受到理论上存在缺陷的影响,被有所诟病。但是随着弥散张量成像技术的发展,DKI、HARDI等扫描序列的出现极大地提高了白质结构成像的稳定性和准确性。这本书是Susumu Mori and J-Donald Tournier教授共同撰写的,Susumu Mori是约翰霍普金斯大学放射科和放射科学系MRI研究部门的教授,他与其他学者合著了约140种参考出版物,为若干国家卫生研究所资助的校外项目担任主要研究员,并参与了许多脑科学方面的项目。这本书中使用了大量的插图来对难以理解的弥散张量成像技术进行有效的解读,以帮助读者更直观地理解这些技术的内部工作原理。书的重点放在解释DTI图像,实验的设计,以及可以进行的应用研究的类型。扩散MRI是一个非常活跃的研究领域,其理论和技术也还在不断发展的过程中。因此这本书是对之前发展的一个良好的总结。同时这本书适合DTI入门读者以及高阶修习者,是DTI数据理解的最佳选择。

注:解读不易,请多多转发支持,您的每一次转发是对我们最好的支持!本文原文及附加材料,请添加赵老师微信索要(微信号:15560177218)

### 使用深度学习处理磁共振图像的方法 #### 方法概述 深度学习在磁共振成像(MRI)中的应用主要集中在图像分割、分类和重建等方面。特别是针对部MRI图像,神经网络能够有效地识别并分割出特定区域或病变部位[^1]。 #### 数据准备 为了训练有效的模型,在开始之前需要收集足够的高质量数据集作为基础。例如,可以采用来自Kaggle平台上的公开资源,该数据集中包含了多位患者的多张三维TIF格式的扫描图片及其标注信息——其中白色像素表示异常组织位置。 #### 模型构建 常用的架构包括但不限于U-Net等专门为医疗影像设计的经典结构。这些模型通常由编码器部分负责特征提取;解码器则用于逐步恢复空间分辨率直至最终输出预测掩膜图层。此外,还可以考虑引入注意力机制来增强重要局部细节的表现力[^3]。 #### 训练过程 当定义好损失函数(如Dice系数)之后就可以利用反向传播算法调整权重参数使得误差最小化。值得注意的是由于医学领域样本量相对有限所以可能还需要采取一些策略比如迁移学习或者数据扩增以提高泛化能力。 #### 性能评估 完成一轮完整的迭代后应当对测试集合进行全面验证从而获得各项指标得分如准确率(Precision),召回率(Recall)等等以此衡量系统的实际效果。 ```python import torch from torchvision import models, transforms from skimage.io import imread from sklearn.metrics import precision_score, recall_score # 加载预训练模型 U-net 并修改最后一层适应当前任务需求 model = UNet(n_classes=2).cuda() transform = transforms.Compose([ transforms.ToTensor(), ]) def evaluate(model_path='best_model.pth'): model.load_state_dict(torch.load(model_path)) test_images = [] # 假设这里已经读取好了所有的测试图片路径列表 predictions = [] ground_truths = [] with torch.no_grad(): for img_file in test_images: image = transform(imread(img_file)).unsqueeze(dim=0).float().cuda() pred_mask = model(image)[0].cpu().numpy() > .5 gt_mask = ... # 获取真实的标签mask predictions.append(pred_mask.flatten()) ground_truths.append(gt_mask.flatten()) print(f'Precision: {precision_score(y_true=np.concatenate(ground_truths), y_pred=np.concatenate(predictions))}') print(f'Recall: {recall_score(y_true=np.concatenate(ground_truths), y_pred=np.concatenate(predictions))}') evaluate() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值