连接组学表征的新进展

近年来,利用静息状态功能性MRI对人类连接组(即人类大脑中的所有连接)的研究迅速普及,特别是随着大规模神经成像数据集的日益可用性。这篇综述文章的目的是描述自2013年神经影像特刊《连接组图谱》以来,功能连接组表征在过去8年里出现的创新。在这一时期,研究已从群体层面的大脑分区化转向个性化连接组的表征以及个体连接组差异与行为/临床变异之间的关系。在分区边界中实现特定个体的准确性,同时保持跨个体通信是一项挑战,目前正在开发各种不同的方法来应对这一挑战,包括改进的对齐、改进的降噪和稳健的群体到个体映射方法。除了对个性化连接组的兴趣之外,人们正在研究数据的新表示,以补充传统的分区连接组表示(即,不同大脑区域之间的成对连接),例如捕捉重叠和平滑变化的连接模式(梯度)的方法。这些不同的连接组表征为大脑固有的功能组织提供了有益的见解,但功能连接组的研究仍然面临挑战。未来的研究将进一步提高可解释性,以深入了解功能MRI所获得的连接组观察的神经机制。还需要进行比较不同连接组表征的验证研究,以建立共识和信心,继续进行临床试验,这些临床试验可能产生有意义的连接组研究转化。

1.简介
绘制人类连接组的目标(即建立人类大脑中所有连接的模型)可以在从单个神经元到宏观大脑区域/网络的不同尺度上进行处理,并使用不同的模式,如结构和功能测量。在这篇综述文章中,我们将重点放在宏观功能连接组的测量与功能磁共振成像(fMRI),最常见的是在参与者休息时获得。在美国国立卫生研究院(NIH)的重大投资推动下,青少年人类连接组项目为随后的研究团队在疾病人群中研究连接体和整个生命周期研究连接体铺平了道路。HCP-YA的进展和见解也为最近的人群神经成像研究提供了信息,如英国生物样本库成像研究和纵向ABCD研究。在这些大数据的努力中,连接体研究在研究个性化预测,行为相关性,和疾病标志物方面发挥着核心作用。

现代连接体研究建立在丰富的历史基础上,从19世纪和20世纪的早期显微镜和绘图的见解发展而来,通过功能PET和MR连接的早期,以及当今大数据的丰富(无论是深度的,每个个体有很多数据点,还是广泛的,很多个体)和计算资源。在这篇文章中,我们概述了自上一期神经影像特刊《连接组图谱》出版以来,在过去八年中发生的新进展。我们讨论了fMRI数据的连接组表征的方法和想法是如何进步的,以及未来仍然存在的开放问题和挑战。

通过fMRI研究宏观功能连接组,该领域对人类大脑的固有组织原则有了实质性的见解。早期的工作集中于揭示群体层次的总体连接模式,包括发现默认模式网络,以及其他模仿任务相关激活模式的可复制网络,这些网络与潜在的结构连接有关。近年来,我们看到了从这些具有里程碑意义的绘制群体层面连接模式的早期努力转向跨个体行为研究和询问个性化职能组织。这一转变至关重要,因为在大脑功能组织中存在大量个体间的可变性,特别是在关联皮层中。个体间的差异性是人类大脑的基本属性,在新生儿中已经很明显。此外,猕猴和人类可能存在类似的个体间变异空间分布,这将多模态关联区域与主要区域区分开来,表明这一现象具有进化历史。与应用科学发现的群体到主体的转变相一致,方法学方面的努力正慢慢从创建基于群体的功能地图集转变,致力于在健康受试者和患者中捕捉无偏倚的个体化连接组变异的方法。在欣赏个体间差异的同时,该领域也开始超越仅将大脑视为具有明确边界的区域/网络模块集的观点,研究组织的平滑梯度和复杂时空模式的功能。这些功能连接组的不同表征为大脑组织提供了互补(而不是相互排斥)的见解。这篇综述文章的目的是对近年来出现的人类连接体的各种表征提供一个简要的入门。

首先,我们回顾了处理功能连接体系统混淆的预处理策略的进展(第2节)。我们总结了基于将大脑划分为一系列不同区域的功能连接体的传统概念(第3节)。然后讨论非分区的连接组表征,如梯度(第4节)。向个性化连接组表征和相关挑战的转变是第5节的主题。在结论部分(第6部分),我们强调了未来的研究领域,这将是迈向rfMRI连接组领域成熟的重要下一步。

2.数据预处理的进展
选择性而有效的fMRI数据清理对于所有连接组表征至关重要,特别是对于个体大脑连接和活动的表征(见第5节)。例如,HCP的大脑成像预处理和分析方法依赖于多个去噪声阶段。总体目标是去除与头部运动、呼吸和心脏生理学、扫描仪伪影和热噪声相关的fMRI波动,而不去除与神经相关的fMRI激活。验证这种方法是具有挑战性的,我们建议使用预期神经信号的实验性调制(即,基于任务的范式),以确保去噪步骤只是去除噪声并保留所有神经信号。事实上,我们已经证明了使用空间ICA(在每个受试者中理想地结合跨fMRI运行)和机器学习组件分类器FIX在从头部运动、生理和扫描仪伪影中去除特定空间伪影方面具有很高的准确性。这种方法类似于其他人提倡的流行洗涤方法,但ICA的优点是消除噪声方差的比例在一个给定的帧(加权或软擦洗,而不是一个全或无的方法)也和清洁低于擦洗阈值的时间点,不消除神经信号。事实上,最近的研究表明,即使在低运动、未刷洗的时间点,对受试者进行物理约束也能带来比刷洗更大的降噪效果,这表明对未刷洗时间点进行清理也很重要。尽管擦洗和空间的基于ICA的去噪都降低了时间自由度,但只要成分之间存在共享信息,基于IC的去噪将比擦洗去除更少的时间自由度,从而提高统计能力。在采用标准的刚性图像对齐方法后,由于头部运动改变了梯度回波EPI数据中的磁场不均匀性和切片到体积的错配准,残余图像失真仍然存在。这些扭曲需要通过运动交互建模明确的敏感性和切片到体积对齐,以实现最佳校正(并避免在ICA中显示为伪影)。自旋回声扩散MRI的相关工具已经存在,而FSL和HCP预处理管道中的梯度回声fMRI的相关工具即将问世。

重要的是,多篇论文表明,基于空间ICA的去噪并不能消除由呼吸频率和深度变化引起的与CO2血分压相关的人工全血流量变化。

在HCP的去噪方法中,在空间最小预处理之后,在跨个体基于区域特征的配准之前,立即应用基于个体主体空间ICA的去噪,确保可能影响跨个体配准的特定空间成分被移除,同时避免可能影响此类配准的神经信号变化。

在跨个体基于区域特征的配准之后,HCP的去噪方法被扩展到使用时间ICA对全球呼吸噪声进行组级去噪,利用改进的跨个体通信。

最后,热噪声对数据清理提出了一个有趣的挑战。虽然已经开发了一些方法来减少热噪声,但同时没有对数据进行空间或时间平滑,与时间平滑类似,这些方法降低了时间自由度,从而降低了统计效率。因此,消除热噪声的最佳方法可能取决于计划的分析方法,基于相关的方法(例如,在计算密集连接组时,两个噪声信号的两两相关)可能比基于回归的方法(如双回归)更能从热噪声去除中获益(噪声数据和来自加权平均的相对无噪声分量时间序列之间的关系)整个大脑)。也就是说,在广泛的分析频谱中,最有效的方法可能涉及神经解剖学信息的空间平滑(例如,在高质量的分区中实现),因为它在不降低时间自由度的情况下降低了热噪声。

3.分区的连接体
为了实现将大脑中的所有连接映射到连接组学的目标,重要的第一步是设置映射的单位(即,连接将被绘制到之间的元素)。举个直观的例子,假设我们想要绘制一个国家的所有社会互动。如果我们把每个人当作一个整体,把所有人之间的所有互动都画出来,那么一个国家的社会联系将非常紧密,很难解读。因此,我们可能希望将人们分组在一起,这样我们就可以绘制出家庭、家庭、社区或其他社会群体(如学校/工作部门或机构)之间的联系。随着单位变大,社会连接组中的连接数量作为一个整体减少,因为单位内的社会互动不再被认为是单位之间的连接。功能连接组也是如此,在作为单元定义的一部分或作为单元间连接的表示连接信息之间存在歧义。这个类比也指出了用于确定单位的标准的模糊性。例如,一个在工作日住在学校,周末回家的大学生应该被包括在家庭家庭单位还是大学宿舍家庭单位,或者两者都包括?在确定功能连接组的大脑单位时也存在类似的问题和模糊。

fMRI中最小的可能单位是测量体素,或基于表面的预处理后的灰质顶点。值得注意的是,这些最小的测量单位已经包含了数千个神经元,因此与单个神经元甚至突触的最小相关生物单位相去甚远。在功能连接组中,映射所有体素/顶点之间的连接并不常见,相反,体素通常被组合成更大的区域,尽管最近的研究表明,细尺度密集连接可能包含在粗尺度区域连接组中丢失的行为相关信息。然而,为了提高计算、统计和解释效率,通常在区域层面进行分析。这样的数据分组是合理的,因为每个大脑区域都被认为对特定行为下的功能网络进行的神经计算有独特的贡献。大脑区域通常也有专门的结构(即内部组织和局部连接),具有与其他区域的独特的远程连接模式,并可能在空间上代表感觉或运动系统或认知系统的地形图。因此,功能连接体最常用的方法是将大脑的低级别封装成更小数量的单元,每个单元由许多体素/顶点组成。值得注意的是,给定分区内大小的变化可能会影响分区之间的可发现性和多基因性。因此,根据研究目标的不同,可以选择大小相同的分区。

4.非分区连接体表征
前一节讨论的分区型连接体方法为绘制大脑功能连接提供了一个直观的框架。同时,在许多皮质块中,边界取决于所选择的模态,可能在所有模态或所有分析方法中都不显示明确的边界。在分区内简单平均假定在一个特定的分区内连通性概况是均匀的,只有一个主导模式。然而,功能和微观结构在一个区域内往往是高度变化的,并且在不同的形态之间不一致。此外,功能和结构上的变化表现出多重性(即重叠),并沿着多个有意义的方差轴组织。这种不同和重叠的功能组织的挑战不能通过使用更细粒度的分区来克服,而可能是通过多维连接体表征来研究。

考虑多样性的一种方法是在网络组织的定义中允许空间重叠。另一种解决多样性的方法是根据体素或顶点之间的关系分析皮质组织,并在该组织中提取多个特征方差轴。遗传、转录组和进化模式已被证明沿皮质和海马逐渐变化,支持大脑物理布局与其功能之间的内在关系。

还出现了包含动态时间信息的其他连接组表征,包括隐藏马尔可夫模型和准周期波。综上所述,本节描述了连接组表征方面的一些进展,这些进展超越了传统的分区方法。

5.个体连接体
大脑图谱通常首先在群体水平上实例化,如果已采取措施确保个体受试者的大脑区域尽可能排列整齐,这尤其有效。使用组平均值有助于定义群体中什么是典型的,实现不同个体之间的对应,从而实现类对类比较,并且在不同个体之间取平均值可以显著提高微妙效果的对比度与噪声比。除了这些优势之外,众所周知,即使使用基于区域特征的皮层表面配准来精确对齐皮层区域,相当一部分个体受试者至少在某些皮质区域会出现非典型布局。因此,对大多数受试者来说,个性化的连接体表征可能是最准确的。这种准确性代表了正确捕捉真实的皮质区域边界个体差异和使用有限数量的数据绘制个体区域边界固有的增加的不确定性之间的权衡,这些数据的对比度与噪声比低于组级数据。事实上,最近对这种权衡的探索的研究表明,增加静息状态fMRI数据的数量显著提高了个体对大脑连接估计的可靠性。需要进一步的工作来评估不同数量、范式(例如,静息状态、传统任务、自然电影)和fMRI数据的场强度(例如,3T和7T)对基于跨个体区域特征的配准和个体区域分类的准确性的影响。

可以使用多种方法实现单个主体的封装。一种方法依赖于学习每个人类皮层区域的多模态区域指纹,并使用机器学习区域分类器在个体中使用灰度坐标多模态地图来找到每个皮层区域。重要的是,这种方法能够识别皮层区域,即使个体的皮层区域具有非典型布局,因此不会与基于平面特征的表面配准对齐。与这种配准类似,如上所述,用于区域分类的fMRI的最佳数量、类型和场强尚未被确定,目前正在进行的工作试图做到这一点。此外,准确的个体区域分类将有助于探索非典型大脑区域的神经生物学意义,并回答是否所有人都有相同的大脑区域,或者是否有些人有多余的区域,有些人没有。准确的fMRI去噪(第2部分)对于确保噪声不会在个体受试者中产生大脑区域以及神经信号不会被移除而导致大脑区域缺失至关重要。

另一种方法试图识别每个受试者大脑中在群体层面定义的功能网络。每个个体的功能组织是根据功能连接性确定的,使用迭代调整算法,由群体水平图谱和在人群中预估的跨个体可变性指导。其核心思想是让个人的特质来驱动网络解决方案。关键的是,基于人口的图谱对每个受试者或每个大脑区域的单个大脑分区的影响是不相同的,它可以根据已知的个体可变性分布和特定受试者的信噪比分布灵活调整。具体来说,当基于人群的图谱对已知具有高水平主体间可变性的大脑区域或在特定主体中显示良好信噪比的大脑区域的影响小于个体受试者数据时,应用加权策略。已有研究表明,使用该技术定位的功能网络可以通过外科患者的侵入性皮层刺激绘图来验证。另一种分层贝叶斯方法是概率泛函模式(PROFUMO)。

大脑对齐的最后一种方法,超对齐,在这里值得一提。上述基于区域特征的跨个体配准方法明显改善了个体间大脑区域的对应关系,但其局限性在于无法解释跨个体的拓扑差异。

从组分区到个性化的连接组表示有很多优势。首先,从区间中提取的平均时间序列构成了许多连接组分析的基础,如果区间的边界不能在功能上与个体对齐,那么平均时间序列就不能代表有意义的功能单元。其次,研究个性化连接组可以让我们深入了解先前未开发的主体间差异的来源,如大脑区域和网络的大小、形状、位置和非拓扑变化的差异。第三,准确地捕捉个体化区域/网络边界有助于消除个体差异的时空根源,这对于确保结果的适当解释非常重要。总的来说,随着个体差异研究(如与行为的相关性、个体水平的预测和临床生物标志物研究)的兴趣的增加,准确建模个体连接体的重要性也随之增加。

对于个体差异研究,样本大小是另一个重要的考虑因素,因为抽样可变性导致连接组表征和非成像变量(如行为/生活方式/认知/症状)之间的相关性膨胀和不一致。重要的是,我们必须调整我们的预期,并认识到大脑行为相关性的现实和可重现效应规模可能比之前报告的(远)小,因此需要更大的样本来可靠和可重现地检测这些效应。在过去,大多数研究的样本量相对较小,因此由于简单的功率限制,需要较高的显著性阈值,根据定义,任何通过显著性的发现都具有相对较高的效应量。然而,这些发现往往无法在新样本中复制,因为它们在很大程度上是由抽样可变性驱动的。大规模神经成像数据集的可用性为解决过去的挑战提供了机会。然而,这需要接受小但可重复的效应量是标准,这是值得研究的。

6.总结
自上一期神经影像专题《连接体》出版以来,这一领域已经取得了长足的进步。功能连接组的概念化方式(包括理论和分析)已经扩展到考虑重叠网络和多个组织轴/梯度。这些静息状态fMRI数据的不同表现为大脑功能的组织原理提供了非常有价值和互补的见解。此外,对不同个体间可变性的更深入的认识推动了个性化连接组的详细评估,以及在预处理、跨个体配准和个性化分区方面的方法学进展。在图1中,我们提供了一个沿着创新的两个主要轴的最新大脑表征示意图(即,非分区表征和个性化表征)。该示意图中连接组表示的位置是相对的和近似的,基于当前文献中的实现和示例(即轴不代表可量化的单位)。尽管如此,我们希望这张示意图——连同本文中的汇总表——将有助于读者理解连接体的不同表示之间的关系。
在这里插入图片描述

图片
图1 概述方法和分区作为算法约束的函数(x轴;分区到非分区)和输入数据(y轴;个体服从于群体)。
考虑到在研究连接组时广泛的定义、方法和权衡,功能连接这个术语已经变得过于宽泛,甚至可能是不准确的。因此,需要更具体地描述我们如何表征大脑,需要哪些假设和约束,以及这些可能如何影响结果和解释。

展望未来,关于功能连接体仍有许多未解之谜。进一步的研究需要更好地理解fmri衍生的连接体的生物学基础。例如,在非人灵长类动物中,详细比较非侵入性功能连接体与侵入性定义结构连接体或侵入性功能记录,可能有助于验证建模功能连接的最佳方法。此外,还需要开展更多的工作来建立连接组测量的临床效用,例如用于早期诊断(如阿尔茨海默病)和治疗反应的预测(如重度抑郁症)。虽然现有的小规模研究暗示了有意义的效果,但需要进行全面的临床试验来实现有意义的临床转化并影响患者。降低此类临床试验可能性的一个因素是缺乏关于适当预处理和分析方法的白皮书协议。为了达成这样的协议,需要进行更多的比较基准研究、标准化和协作是必要的。

参考文献:Recent developments in representations of the connectome

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch是一个流行的深度学习框架,它也支持表征学习。表征学习是指通过自动学习将输入数据映射到一个新的表示空间,使得这个新的表示能更好地捕捉和表示数据的关键特征。在PyTorch中,可以使用神经网络模型来进行表征学习。 常用的表征学习方法包括自编码器(Autoencoder)、变分自编码器(Variational Autoencoder)和生成对抗网络(Generative Adversarial Networks)。这些方法可以通过在PyTorch中定义相应的模型架构和训练过程来实现。 自编码器是一种无监督学习方法,它由编码器和解码器两部分组成。编码器将输入数据映射到低维的隐藏表示,解码器则将隐藏表示映射回原始数据空间。通过最小化重构误差,自编码器可以学习到数据的一种紧凑的表示。 变分自编码器是自编码器的一种扩展形式,它引入了隐变量和概率分布的概念。通过最大化对数似然函数,变分自编码器能够学习到数据的潜在分布,并生成新的样本。 生成对抗网络由生成器和判别器两部分组成。生成器试图生成逼真的样本,而判别器则尝试区分生成的样本和真实样本。通过对抗训练的方式,生成对抗网络可以学习到数据分布的特征,并生成更加逼真的样本。 在PyTorch中,可以使用torch.nn模块来定义表征学习模型的架构,使用torch.optim模块来定义优化算法,并使用torch.utils.data模块来加载和处理数据。同时,PyTorch也提供了一些预训练的表征学习模型,如BERT、GPT等,可以直接在实际任务中进行微调和应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值