双曲嵌入论文与代码实现——2. 方法与代码

本篇接上一篇:双曲嵌入论文与代码实现——1. 数据集介绍

1. 方法说明

首先学习相关的论文中的一些知识,并结合进行代码的编写。文中主要使用Poincaré embedding。

整体的空间为一个 d d d维的开球: B d = { x ∈ R d ∣ ∥ x ∥ < 1 } \mathcal{B}^{d}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid\|\boldsymbol{x}\|<1\right\} Bd={xRdx<1} ∥ ⋅ ∥ \|\cdot\| 为欧几里得范数(Euclidean norm)。

黎曼度规张量(Riemannian metric tensor, g x g_{\boldsymbol{x}} gx)与欧几里得度规张量( g E g^{E} gE)之间的关系定义如下:
g x = ( 2 1 − ∥ x ∥ 2 ) 2 g E ⇒ g E = ( 1 − ∥ x ∥ 2 ) 2 4 g x (1) g_{\boldsymbol{x}}=\left(\frac{2}{1-\|\boldsymbol{x}\|^{2}}\right)^{2} g^{E} \quad \Rightarrow \quad g^{E} = \frac{\left(1-\|\boldsymbol{x}\|^{2}\right)^{2}}{4} g_{\boldsymbol{x}} \tag{1} gx=(1x22)2gEgE=4(1x2)2gx(1)
其中 x ∈ B d \boldsymbol{x} \in \mathcal{B}^{d} xBd,点 u , v ∈ B d \boldsymbol{u}, \boldsymbol{v} \in \mathcal{B}^{d} u,vBd 之间的距离在此空间下的定义如下:
d ( u , v ) = arcosh ⁡ ( 1 + 2 ∥ u − v ∥ 2 ( 1 − ∥ u ∥ 2 ) ( 1 − ∥ v ∥ 2 ) ) . d(\boldsymbol{u}, \boldsymbol{v})=\operatorname{arcosh}\left(1+2 \frac{\|\boldsymbol{u}-\boldsymbol{v}\|^{2}}{\left(1-\|\boldsymbol{u}\|^{2}\right)\left(1-\|\boldsymbol{v}\|^{2}\right)}\right) . d(u,v)=arcosh(1+2(1u2)(1v2)uv2).

对应的python代码为:

def dist1(vec1, vec2): # eqn1 
    diff_vec = vec1 - vec2
    return 1 + 2 * norm(diff_vec) / ((1 - norm(vec1)) * (1 - norm(vec2)))

上述公式不仅可以表示出两个点之间的距离 ∥ u − v ∥ \|\boldsymbol{u}-\boldsymbol{v}\| uv,还能够衡量节点的层级属性 ∥ u ∥ \|\boldsymbol{u}\| u, ∥ v ∥ \|\boldsymbol{v}\| v,此范数越接近 0 0 0表示越接近根节点(根节点就是 0 0 0),越接近 1 1 1表示越接近开球的边界 ∂ B d \partial \mathcal{B}^d Bd

损失函数

我们想要寻找最优的embedding,就需要构建一个损失函数,目标是使得相似词汇的embedding结果,尽可能接近,且层级越高(类别越大)的词越靠近中心。我们需要最小化这个损失函数,从而得到embedding的结果。

这里假设 n n n个词的embeddings: Θ = { θ i } i = 1 n \Theta=\left\{\boldsymbol{\theta}_{i}\right\}_{i=1}^{n} Θ={θi}i=1n,我们的优化问题为:

Θ ′ ← arg ⁡ min ⁡ Θ L ( Θ )  s.t.  ∀ θ i ∈ Θ : ∥ θ i ∥ < 1 \Theta^{\prime} \leftarrow \underset{\Theta}{\arg \min } \mathcal{L}(\Theta) \quad \text { s.t. } \forall \boldsymbol{\theta}_{i} \in \Theta:\left\|\boldsymbol{\theta}_{i}\right\|<1 ΘΘargminL(Θ) s.t. θiΘ:θi<1

由于是在半径为 1 1 1的一个开球空间内进行优化,因此需要对embedding进行约束,限制范数小于 1 1 1

损失函数具体形式我们定义如下(注意,原始论文这里写错了,少了一个负号):
L ( Θ ) = ∑ ( u , v ) ∈ D − log ⁡ e − d ( u , v ) ∑ v ′ ∈ N ( u ) e − d ( u , v ′ ) , \mathcal{L}(\Theta)=\sum_{(u, v) \in \mathcal{D}} -\log \frac{e^{-d(\boldsymbol{u}, \boldsymbol{v})}}{\sum_{\boldsymbol{v}^{\prime} \in \mathcal{N}(u)} e^{-d\left(\boldsymbol{u}, \boldsymbol{v}^{\prime}\right)}}, L(Θ)=(u,v)DlogvN(u)ed(u,v)ed(u,v),

( u , v ) (u, v) (u,v) 为有邻边相连的正样本对, ( u , v ′ ) (u, v^{\prime}) (u,v) 为负样本对(没有边连接),且 N ( u ) = { v ∣ ( u , v ) ∉ D } ∪ { u } \mathcal{N}(u)=\{v \mid(u, v) \notin \mathcal{D}\} \cup\{u\} N(u)={v(u,v)/D}{u} 是关于 u u u 的负样本集合(包括 u u u )。在训练中,针对每个正样本,我们随机采样 10 10 10个负样本。

其实在传统的词嵌入中,我们也是用上述的损失函数,但距离选用的是余弦距离。

梯度下降

后面将使用梯度下降方法进行求解迭代。

θ t + 1 = θ t − η t ∇ R L ( θ t ) \boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \nabla_{R} \mathcal{L}\left(\boldsymbol{\theta}_{t}\right) θt+1=θtηtRL(θt)

由于是将欧氏空间计算得到的梯度在黎曼空间中进行迭代,由上文的(1)式,我们有:

θ t + 1 = θ t − η t ( 1 − ∥ θ t ∥ 2 ) 2 4 ∇ E L ( θ t ) \boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta_{t} \frac{\left(1-\left\|\boldsymbol{\theta}_{t}\right\|^{2}\right)^{2}}{4} \nabla_{E}\mathcal{L}\left(\boldsymbol{\theta}_{t}\right) θt+1=θtηt4(1θt2)2EL(θt)

梯度求解

这里关于欧氏空间的梯度 ∇ E = ∂ L ( θ ) ∂ d ( θ , x ) ∂ d ( θ , x ) ∂ θ \nabla_{E}=\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial d(\boldsymbol{\theta}, \boldsymbol{x})} \frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}} E=d(θ,x)L(θ)θd(θ,x) 依赖于两个部分。

根据当前样本是属于正样本还是负样本可以很轻易求解出(具体求解结果可参考后面的代码,这里不进行表示):
∂ L ( θ ) ∂ d ( θ , x ) \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial d(\boldsymbol{\theta}, \boldsymbol{x})} d(θ,x)L(θ)

下面考虑另一部分:
∂ d ( θ , x ) ∂ θ \frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}} θd(θ,x)

α = 1 − ∥ θ ∥ 2 , β = 1 − ∥ x ∥ 2 \alpha=1-\|\boldsymbol{\theta}\|^{2}, \beta=1-\|\boldsymbol{x}\|^{2} α=1θ2,β=1x2 以及,
γ = 1 + 2 α β ∥ θ − x ∥ 2 \gamma=1+\frac{2}{\alpha \beta}\|\boldsymbol{\theta}-\boldsymbol{x}\|^{2} γ=1+αβ2θx2
Poincaré distance 关于 θ \boldsymbol{\theta} θ 的偏导可以求得
∂ d ( θ , x ) ∂ θ = ∂ arcosh γ ∂ γ ⋅ ∂ γ ∂ θ = 4 α β γ 2 − 1 ( ∥ x ∥ 2 − 2 ⟨ θ , x ⟩ + 1 α θ − x ) . \frac{\partial d(\boldsymbol{\theta}, \boldsymbol{x})}{\partial \boldsymbol{\theta}}=\frac{\partial \text{arcosh} \gamma}{\partial \gamma} \cdot \frac{\partial \gamma}{\partial \boldsymbol{\theta}}=\frac{4}{\alpha \beta \sqrt{\gamma^{2}-1}}\left(\frac{\|\boldsymbol{x}\|^{2}-2\langle\boldsymbol{\theta}, \boldsymbol{x}\rangle+1}{\alpha} \boldsymbol{\theta}-\boldsymbol{x}\right) . θd(θ,x)=γarcoshγθγ=αβγ21 4(αx22θ,x+1θx).

又由于限制: ∥ θ ∥ < 1 \|\boldsymbol{\theta}\| < 1 θ<1,因此在实际优化的过程中,为了避免embedding跑到开球外,我们通过投影约束,将embedding保持在Poincaré球内:
proj ⁡ ( θ ) = { θ / ∥ θ ∥ − ε  if  ∥ θ ∥ ≥ 1 θ  otherwise  , \operatorname{proj}(\boldsymbol{\theta})= \begin{cases}\boldsymbol{\theta} /\|\boldsymbol{\theta}\|-\varepsilon & \text { if }\|\boldsymbol{\theta}\| \geq 1 \\ \boldsymbol{\theta} & \text { otherwise },\end{cases} proj(θ)={θ/θεθ if θ1 otherwise ,
ε \varepsilon ε 是为了保持数值的稳定而设置的常数,我们通常取 ε = 1 0 − 5 \varepsilon=10^{-5} ε=105,因此总的迭代公式为:
θ t + 1 ← proj ⁡ ( θ t − η t ( 1 − ∥ θ t ∥ 2 ) 2 4 ∇ E ) .  \boldsymbol{\theta}_{t+1} \leftarrow \operatorname{proj}\left(\boldsymbol{\theta}_{t}-\eta_{t} \frac{\left(1-\left\|\boldsymbol{\theta}_{t}\right\|^{2}\right)^{2}}{4} \nabla_{E}\right) \text {. } θt+1projθtηt4(1θt2)2E

对应的更新函数在Python中设置如下:

# 范数计算
def norm(x):
    return np.dot(x, x)

# 距离函数对\theta求偏导
def compute_distance_gradients(theta, x, gamma):
    alpha = (1.0 - np.dot(theta, theta))
    norm_x = norm(x)
    beta = (1 - norm_x)
    c_ = 4.0 / (alpha * beta * sqrt(gamma ** 2 - 1))
    return c_ * ((norm_x - 2 * np.dot(theta, x) + 1) / alpha * theta - x)

# 更新公式
def update(emb, grad, lr): 
    c_ = (1 - norm(emb)) ** 2 / 4
    upd =  lr * c_ * grad
    emb = emb - upd
    if (norm(emb) >= 1):
        emb = emb / sqrt(norm(emb)) - eps
    return emb

至此,我们就可以开始写一个完整的训练过程了。在这之前,再补充一个绘图函数(可以看embedding的实际训练情况):

def plotall(ii):
    fig = plt.figure(figsize=(10, 10))
    # 绘制所有节点
    for a in emb:
        plt.plot(emb[a][0], emb[a][1], marker = 'o', color = [levelOfNode[a]/(last_level+1),levelOfNode[a]/(last_level+1),levelOfNode[a]/(last_level+1)])
    for a in network:
        for b in network[a]:
            plt.plot([emb[a][0], emb[b][0]], [emb[a][1], emb[b][1]], color = [levelOfNode[a]/(last_level+1),levelOfNode[a]/(last_level+1),levelOfNode[a]/(last_level+1)])
            circle = plt.Circle((0, 0), 1, color='y', fill=False)
            plt.gcf().gca().add_artist(circle)
    plt.xlim(-1, 1)
    plt.ylim(-1, 1)
    fig.savefig('~/GitHub/hyperE/fig/' + str(last_level) + '_' + str(ii) + '.png', dpi = 200)

2. 代码训练过程

首先初始化embeddings,这里按照论文中写的,用 ( − 0.001 , 0.001 ) (-0.001, 0.001) (0.001,0.001)间的均匀分布进行随机初始化:

emb = {}
for node in levelOfNode:
    emb[node] = np.random.uniform(low = -0.001, high = 0.001, size = (2, ))

下面设置学习率等参数:

vocab = list(emb.keys())
eps = 1e-5    
lr = 0.1       # 学习率
num_negs = 10  # 负样本个数

接下来开始正式迭代,具体每一行的含义均在注释中有进行说明:


# 绘制初始化权重
plotall("init")

for epoch in range(1000):
    loss = []
    random.shuffle(vocab)
    
    # 下面需要抽取不同的样本:pos2 与 pos1 相关;negs 不与 pos1 相关
    for pos1 in vocab:
        if not network[pos1]: # 叶子节点则不进行训练
            continue
        pos2 = random.choice(network[pos1]) # 随机选取与pos1相关的节点pos2
        dist_pos_ = dist1(emb[pos1], emb[pos2]) # 保留中间变量gamma,加速计算
        dist_pos = np.arccosh(dist_pos_) # 计算pos1与pos2之间的距离
        
        # 下面抽取负样本组(不与pos1相关的样本组)
        negs = [[pos1, pos1]]
        dist_negs_ = [1] 
        dist_negs = [0]
        
        while (len(negs) < num_negs):
            neg = random.choice(vocab)
            
            # 保证负样本neg与pos1没有边相连接
            if not (neg in network[pos1] or pos1 in network[neg] or neg == pos1): 
                dist_neg_ = dist1(emb[pos1], emb[neg])
                dist_neg = np.arccosh(dist_neg_)
                negs.append([pos1, neg])
                dist_negs_.append(dist_neg_) # 保存中间变量gamma,加速计算
                dist_negs.append(dist_neg)
        
        # 针对一个样本的损失
        loss_neg = 0.0
        for dist_neg in dist_negs:
            loss_neg += exp(-1 * dist_neg)
        loss.append(dist_pos + log(loss_neg))
        
        # 损失函数 对 正样本对 距离 d(u, v) 的导数
        grad_L_pos = -1
        
        # 损失函数 对 负样本对 距离 d(u, v') 的导数
        grad_L_negs = []
        for dist_neg in dist_negs:
            grad_L_negs.append(exp(-dist_neg) / loss_neg)
            
        # 计算正样本对中两个样本的embedding的更新方向
        grad_pos1 = grad_L_pos * compute_distance_gradients(emb[pos1], emb[pos2], dist_pos_)
        grad_pos2 = grad_L_pos * compute_distance_gradients(emb[pos2], emb[pos1], dist_pos_)
        
        # 计算负样本对中所有样本的embedding的更新方向
        grad_negs_final = []
        for (grad_L_neg, neg, dist_neg_) in zip(grad_L_negs[1:], negs[1:], dist_negs_[1:]):
            grad_neg0 = grad_L_neg * compute_distance_gradients(emb[neg[0]], emb[neg[1]], dist_neg_)
            grad_neg1 = grad_L_neg * compute_distance_gradients(emb[neg[1]], emb[neg[0]], dist_neg_)
            grad_negs_final.append([grad_neg0, grad_neg1])
            
        # 更新embeddings
        emb[pos1] = update(emb[pos1], -grad_pos1, lr)
        emb[pos2] = update(emb[pos2], -grad_pos2, lr)
        for (neg, grad_neg) in zip(negs, grad_negs_final):
            emb[neg[0]] = update(emb[neg[0]], -grad_neg[0], lr)
            emb[neg[1]] = update(emb[neg[1]], -grad_neg[1], lr)
    
    # 输出损失
    if ((epoch) % 10 == 0):
        print(epoch + 1, "---Loss: ", sum(loss))
        
    # 绘制二维embeddings
    if ((epoch) % 100 == 0):
        plotall(epoch + 1)

3. 结果表现

结果如下所示(与论文有些不一致):

实际上应该还是有效的,有些团都能聚合在一起,下面是一个随机训练的结果(可以看出非常混乱):

其他参考资料

  1. Poincaré Embeddings for Learning Hierarchical Representations
  2. Implementing Poincaré Embeddings
  3. models.poincare – Train and use Poincare embeddings
  4. How to make a graph on Python describing WordNet’s synsets (NLTK)
  5. networkx.drawing.nx_pylab.draw_networkx
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值