最近在关注一些图像图像重建的方法,正好在机器之心上看到了一篇名为——Deep Image Prior的推送,讲的是一种比较有意思的(不需要进行学习),进行图像重建、超分辨率以及去噪的方法。这虽然是一篇一年前的文章,但在现在仍然有实用的前景。
项目主页:https://dmitryulyanov.github.io/deep_image_prior。
首先我们看一看它能做的事情(下图一张图就能够概括):
我们后面会用几张图片来进行测试,看看算法的实际效果究竟如何,是否有论文中测试图像所展现的那般神奇。首先来聊一聊论文的主要思想。
论文的思想
论文的思想其实非常的厉害,其根本没有有任何的先验知识,也就是根本不需要去根据已有的训练结果来进行填补,而是根据输入图像本身的信息进行训练与预测。
方法流程如下(GAN):
- 初始化深度卷积生成(解码)网络 f f f,网络权重随机初始化。此网络主要是通过输入为固定的随机编码向量 z z z,生成出一个仿造的图像 f ( z ) f(z) f(z)。
- 真实的图像我们记为 x x x。现在我们的目标是使 x x x与 f ( z ) f(z) f(z)之间的差异尽可能的小,以此来训练 f f f的参数。
- 选择合适的损失函数。例如对于降噪问题可关注整体的MSE,对于填充问题就应该只关心不需要填充的位置的MSE。注意选择合适的损失函数。例如对于降噪问题可关注整体的MSE,对于填充问题就应该只关心不需要填充的位置的MSE。 <