微分几何 设平面曲线C与同一平面的一条直线l相较于正则点P,并落在直线l的同一侧。证明l是C在P点的切线

题目:设平面曲线 C C C与同一平面的一条直线 l l l相较于正则点 P P P,并落在直线 l l l的同一侧。证明 l l l C C C P P P点的切线。

思考:若平面曲线 C C C表示成 y C = y C ( x ) y_C=y_C(x) yC=yC(x),那么设直线 l l l y l y_l yl,则证明直线 l l l是平面曲线 C C C P P P点的切线只需要证明 y l ‘ = y C ‘ y^‘_l=y^`_C yl=yC

考虑到曲线 C C C在直线 l l l的同一侧,不妨设为下侧,那么就有 y l − y C ⩾ 0 y_l-y_C \geqslant 0 ylyC0。设 f ( x ) = y l ( x ) − y C ( x ) f(x)=y_l(x)-y_C(x) f(x)=yl(x)yC(x),则有 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)0,由于 P P P是交点,所以 f ( x p ) = 0 f(x_p)=0 f(xp)=0

由于 P P P是正则点,那么就可以在 P P P的一个邻域里使用罗尔中值定理,即 f f f P P P点的导数为0,于是便有 y l ‘ = y c ‘ y^`_l=y^`_c yl=yc

然而命题到此并没有得证。事实上平面上的曲线不一定都能表示成 y = y ( x ) y=y(x) y=y(x)的形式,比如单位圆。那么这里就需要用更一般的曲线表示方法来证明该结论。

这里假设需要用到的曲线都是参数曲线,即能够用参数来表示。

C : r ⃗ = r ⃗ ( t ) C: \vec r=\vec r(t) C:r =r (t),点 P P P对应 t = t 0 t=t_0 t=t0。则只需证明 r ⃗ ‘ ( t 0 ) / / l \vec r^`(t_0)//l r (t0)//l

因为点 P P P是正则点,那么存在点 P P P的一个邻域,在这个邻域种 P P P l l l C C C的唯一交点。因为曲线 C C C在直线 l l l的同一侧,则在这个邻域内能取到 r ( t 0 − t 1 , 1 ) , r ( t 0 + t 1 , 2 ) , t 1 , 1 , t 1 , 2 > 0 r(t_0-t_{1,1}),r(t_0+t_{1,2}), t_{1,1},t_{1,2}>0 r(t0t1,1),r(t0+t1,2)t1,1,t1,2>0,做过这两点的直线 l 1 l_1 l1满足 l 1 / / l l_1//l l1//l,记 d = d i s t ( l , l 1 ) d=dist(l,l_1) d=dist(l,l1) l 1 ∩ C = { r ⃗ ( t ) ∣ t = t 0 − t 1 , 1 或 t = t 0 + t 1 , 2 ; t 1 , 1 , t 1 , 2 > 0 } l_1 \cap C=\{ \vec r(t) | t=t_0-t_{1,1}或t= t_0+t_{1,2}; t_{1,1},t_{1,2}>0 \} l1C={r (t)t=t0t1,1t=t0+t1,2;t1,1,t1,2>0}

再做 l i l_i li介于 l l l l i − 1 l_{i-1} li1之间,满足 l i / / l , d i s t ( l , l i ) = d 2 l_i//l,dist(l,l_i)=\frac{d}{2} li//ldist(l,li)=2d l i ∩ C = { r ⃗ ( t ) ∣ t = t 0 − t i , 1 或 t = t 0 + t i , 2 ; 0 < t i , 1 < t i − 1 , 1 , 0 < t i , 2 < t i − 1 , 2 } l_i \cap C = \{ \vec r(t) | t=t_0-t_{i,1}或t= t_0+t_{i,2}; 0<t_{i,1}<t_{i-1,1},0<t_{i,2}<t_{i-1,2} \} liC={r (t)t=t0ti,1t=t0+ti,2;0<ti,1<ti1,1,0<ti,2<ti1,2}。显然, n → ∞ n \to \infty n时, l 1 / / l 2 / / … / / l n / / … → l l_1 // l_2 // … // l_n // … \to l l1//l2////ln//l,所以有 r ⃗ ( t 0 + t n , 2 ) − r ⃗ ( t 0 − t n , 1 ) t n , 2 − t n , 1 / / l \frac{\vec r(t_0+t_{n,2})-\vec r(t_0-t_{n,1})}{t_{n,2}-t_{n,1}} // l tn,2tn,1r (t0+tn,2)r (t0tn,1)//l,且 r ⃗ ( t 0 − t n , 1 ) → r ⃗ ( t 0 ) , r ⃗ ( t 0 + t n , 2 ) → r ⃗ ( t 0 ) \vec r(t_0-t_{n,1}) \to \vec r(t_0), \vec r(t_0+t_{n,2}) \to \vec r(t_0) r (t0tn,1)r (t0),r (t0+tn,2)r (t0),于是 t n , 1 , t n , 2 → 0 t_{n,1},t_{n,2} \to 0 tn,1,tn,20

由点 P P P的正则性, r ⃗ ‘ ( t 0 ) \vec r^`(t_0) r (t0)存在。于是有 lim ⁡ n → ∞ r ⃗ ( t 0 + t n , 2 ) − r ⃗ ( t 0 − t n , 1 ) t n , 2 + t n , 1 = r ⃗ ‘ ( t 0 ) \lim_{n\to\infty} \frac{\vec r(t_0+t_{n,2})-\vec r(t_0-t_{n,1})}{t_{n,2}+t_{n,1}}=\vec r^`(t_0) limntn,2+tn,1r (t0+tn,2)r (t0tn,1)=r (t0), 所以 r ⃗ ‘ ( t 0 ) / / l \vec r^`(t_0)//l r (t0)//l。所以 l l l是曲线 C C C P P P点的切线,命题得证。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

73826669

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值