谣言检测论文(二)

本文提出了一种名为DDGCN的新方法,用于在社交媒体上检测谣言。DDGCN结合了动态事件图卷积网络和用户交互图卷积网络,捕捉消息传播的结构和时间信息,以及知识图谱的动态性。通过时间融合单元,模型能更好地学习动态事件表示和知识表示,从而提高谣言检测的准确性。实验表明,DDGCN在两个数据集上优于其他基线方法,尤其在早期谣言检测方面表现出色。
摘要由CSDN通过智能技术生成

论文分享之

DDGCN: Dual Dynamic Graph Convolutional Networks for

Rumor Detection on Social Media

Mengzhu Sun , Xi Zhang , Jiaqi Zheng , Guixiang Ma
The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI- 22) <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41964296

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值