Pointnet++代码解析及网络维度变化

在这里插入图片描述
PointNet++中***点云分割***部分网络结构如上图所示.

***点云分类***部分只放一下对应的***SA_module***部分的维度变换
在这里插入图片描述
更加详细的解析可以参考我的知乎文章:
https://zhuanlan.zhihu.com/p/164880749

### EfficientNet-B0 的模型结构及工作原理 #### 1. **EfficientNet 基本理念** EfficientNet 是一种基于复合缩放原则设计的神经网络架构,旨在平衡计算资源和模型性能之间的关系。其核心思想是通过对深度、宽度以及输入图像分辨率的同时调整来实现更高效的扩展策略[^2]。 #### 2. **EfficientNet-B0 结构概述** EfficientNet-B0 是该系列中的最小版本,适用于轻量级应用场景。它继承了 EfficientNet 家族的核心特性——MBConv(Mobile Inverted Bottleneck Convolution)块作为主要构建单元,并采用逐层堆叠的方式形成完整的网络结构。 以下是 B0 版本的具体参数配置: - 输入图片尺寸:`224×224` - 参数数量:约 `5.3M` - FLOPs 数量:约 `390M` 这些数值表明 B0 在保持较高精度的同时具备较低的计算开销,非常适合嵌入式设备或移动端部署场景。 #### 3. **MBConv 构建细节** ##### (a) 初始化方法 MBConv 层的设计融合了多种优化技术,包括但不限于深度可分离卷积与挤压激励机制(SE block)[^1]。具体而言,在类定义部分会指定必要的超参如扩张因子(expansion ratio),通道数变化规律等逻辑均在此处完成设定: ```python class MBConv(nn.Module): def __init__(self, inp, oup, stride, expand_ratio=6, se_ratio=0.25): super(MBConv, self).__init__() hidden_dim = round(inp * expand_ratio) layers = [] if expand_ratio != 1: # Pointwise convolution with expansion layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # Depthwise convolution nn.Conv2d(hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim), nn.BatchNorm2d(hidden_dim), Swish(), SqueezeExcitation(hidden_dim, int(oup*se_ratio)), # Linear pointwise convolution nn.Conv2d(hidden_dim, oup, 1, bias=False), nn.BatchNorm2d(oup) ]) self.conv = nn.Sequential(*layers) self.use_res_connect = all([stride == 1, inp == oup]) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) ``` 上述代码片段展示了如何创建一个标准的 MBConv 单元实例化流程及其内部组件构成方式。 ##### (b) Forward 方法解析 在前向传播阶段,如果满足条件则执行跳跃连接操作;否则仅返回经过处理后的特征图输出结果。这种灵活切换机制有助于减少冗余运算并提升整体表现效果。 #### 4. **EfficientNet 整体框架描述** 对于整个 EfficientNet 模型来说,除了初始几层普通的卷积外,其余大部分均由重复排列好的若干组 MBConv 组件拼接而成。每一组之间可能存在细微差异比如步幅大小或者激活函数类型等方面的不同设置情况取决于实际需求而定。 同样地,在官方给出的例子当中也可以看到关于此类信息更加详尽说明文档内容如下所示: ```python def _make_divisible(v, divisor, min_value=None): ... class EfficientNet(nn.Module): def __init__(self, cfgs, num_classes=1000, width_mult=1., depth_mult=1., resolution=(224, 224)): ... def forward(self, x): ... ``` 此段落重点强调了通过调节乘法器系数(`width_mult`, `depth_mult`)可以轻松获得不同规格变体的能力。 --- ### 性能优势总结 相比传统单一维度放大手段(E.g.:单纯增加层数), 复合尺度法则能够显著改善最终得分指标同时控制住额外消耗成本增长幅度合理范围内. ---
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值