Open3D 进阶(4)高斯混合点云聚类

142 篇文章 1557 订阅 ¥39.90 ¥99.00

在这里插入图片描述

本文由CSDN点云侠原创,原文链接。爬虫网站自重。

一、算法原理

1、原理概述

  高斯混合聚类(GMM)算法假设数据点是由一个或多个高斯分布生成的,并通过最大似然估计的方法来估计每个簇的高斯分布的参数,可以用来对数据进行分类。

2、实现流程

  三维空间中点云数据的高斯混合聚类过程如下:

  1. 首先使用类似 k-means 的方法选取一些数据点作为聚类的初始化中心。

  2. 通过交替进行 E (Expectation)和 M (Maximization) 步骤来估计 GMM 的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值