【高数】如何由解倒求微分方程?及微分方程的阶数、任意常数、特征根的关系

目录

一、问题

二、概念理解

1. 微分方程的阶数

2. 解、通解与阶数

3. 特征方程、特征根

三、解法

四、解题技巧

五、小结


一、问题

疑问:除了题目给出的解足够使用代入法外,有时题目会给出一部分特解,或者是给出不足以建立可解方程的解,那么如何用观察法写出其他解,以及如何倒推方程?解决这些方法上的问题,首先要解决下面两个问题。

微分方程的阶数和解中任意常数个数的关系(本质上是解的结构)?与特征根个数的关系?微分方程与特征方程的关系?

二、概念理解

1. 微分方程的阶数

指微分方程中,未知函数的最高阶导数的阶数。最高阶是几阶导数,整个方程就是几阶

2. 解、通解与阶数

解:将某函数及其导数代入微分方程,能使其两端成为恒等式。

通解:解中含有独立任意常数,且其个数与微分方程的阶数相同。几个独立任意常数,就是几阶

特解:不含有任意常数的解。

n阶常系数线性齐次方程,会有n个线性无关的解,被成为基本解组。

3. 特征方程、特征根

特征方程是为研究相应的数学对象而引入的一些等式,它因数学对象不同而不同,包括数列特征方程、矩阵特征方程、微分方程特征方程、积分方程特征方程等。

做题中发现,特征根的个数(一个几重根就算做几个跟)与微分方程阶数相等,特征方程的形式与常系数线性齐次微分方程相同。(一个经验,有待论证。)

特征根的部分内容可能和线性代数有关,放一些可能可以参考的文章链接,后面学到了重新再想下这部分。本文中特征根统一以 r 表示。


《特征根法》https://baike.baidu.com/item/%E7%89%B9%E5%BE%81%E6%A0%B9%E6%B3%95/363524?fr=aladdin

《高阶线性微分方程的特征方程怎么来的》https://www.zhihu.com/question/63107405

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值