目录
一、问题
疑问:除了题目给出的解足够使用代入法外,有时题目会给出一部分特解,或者是给出不足以建立可解方程的解,那么如何用观察法写出其他解,以及如何倒推方程?解决这些方法上的问题,首先要解决下面两个问题。
微分方程的阶数和解中任意常数个数的关系(本质上是解的结构)?与特征根个数的关系?微分方程与特征方程的关系?
二、概念理解
1. 微分方程的阶数
指微分方程中,未知函数的最高阶导数的阶数。最高阶是几阶导数,整个方程就是几阶。
2. 解、通解与阶数
解:将某函数及其导数代入微分方程,能使其两端成为恒等式。
通解:解中含有独立任意常数,且其个数与微分方程的阶数相同。几个独立任意常数,就是几阶。
特解:不含有任意常数的解。
n阶常系数线性齐次方程,会有n个线性无关的解,被成为基本解组。
3. 特征方程、特征根
特征方程是为研究相应的数学对象而引入的一些等式,它因数学对象不同而不同,包括数列特征方程、矩阵特征方程、微分方程特征方程、积分方程特征方程等。
做题中发现,特征根的个数(一个几重根就算做几个跟)与微分方程阶数相等,特征方程的形式与常系数线性齐次微分方程相同。(一个经验,有待论证。)
特征根的部分内容可能和线性代数有关,放一些可能可以参考的文章链接,后面学到了重新再想下这部分。本文中特征根统一以 r 表示。
《特征根法》:https://baike.baidu.com/item/%E7%89%B9%E5%BE%81%E6%A0%B9%E6%B3%95/363524?fr=aladdin
《高阶线性微分方程的特征方程怎么来的》:https://www.zhihu.com/question/63107405