已知二阶非齐次方程通解,反求该非齐次方程

已知二阶非齐次线性微分方程的通解,可以反求该非齐次方程。方法是将通解代入方程,然后求出方程的系数。 由于非齐次方程的通解由齐次方程的通解和一个特解组成,所以我们需要仔细区分这两部分。

方法:

  1. 确定齐次方程的通解: 从给定的通解中,识别出对应于齐次方程的通解部分。这通常是包含任意常数 C₁ 和 C₂ 的部分。

  2. 求解齐次方程的特征方程: 根据齐次方程的通解形式,确定其对应的特征方程。例如,如果齐次方程的通解为 y c = C 1 e r 1 x + C 2 e r 2 x y_c = C_1 e^{r_1 x} + C_2 e^{r_2 x} yc=C1er1x+C2er2x, 则特征方程为 r 2 − ( r 1 + r 2 ) r + r 1 r 2 = 0 r^2 - (r_1 + r_2)r + r_1 r_2 = 0 r2(r1+r2)r+r1r2=0。 其他情况(例如有重根或复根)也需根据对应通解形式写出特征方程。

  3. 确定非齐次项: 将完整的通解代入到二阶线性微分方程的一般形式中: a y ′ ′ + b y ′ + c y = f ( x ) ay'' + by' + cy = f(x) ay′′+by+cy=f(x),然后根据结果求解 f ( x ) f(x) f(x)。 由于齐次方程通解代入后结果为0,所以剩余部分就是 f ( x ) f(x) f(x)

  4. 写出完整的非齐次方程: 将求得的 a, b, c 和 f(x) 代入到一般形式中,即得到最终的非齐次方程。

例题:

例1:

已知二阶非齐次方程的通解为: y = C 1 e x + C 2 e 2 x + x y = C_1 e^x + C_2 e^{2x} + x y=C1ex+C2e2x+x

  1. 齐次方程通解: y c = C 1 e x + C 2 e 2 x y_c = C_1 e^x + C_2 e^{2x} yc=C1ex+C2e2x
  2. 特征方程: 特征根为 1 和 2,所以特征方程为 ( r − 1 ) ( r − 2 ) = r 2 − 3 r + 2 = 0 (r-1)(r-2) = r^2 - 3r + 2 = 0 (r1)(r2)=r23r+2=0
  3. 非齐次项: 将通解代入 y ′ ′ − 3 y ′ + 2 y = f ( x ) y'' - 3y' + 2y = f(x) y′′3y+2y=f(x)
    ( C 1 e x + 4 C 2 e 2 x ) − 3 ( C 1 e x + 2 C 2 e 2 x ) + 2 ( C 1 e x + C 2 e 2 x + x ) = 0 + 2 x (C_1 e^x + 4C_2 e^{2x} ) - 3(C_1 e^x + 2C_2 e^{2x}) + 2(C_1 e^x + C_2 e^{2x} + x) = 0 + 2x (C1ex+4C2e2x)3(C1ex+2C2e2x)+2(C1ex+C2e2x+x)=0+2x
    所以 f ( x ) = 2 x f(x) = 2x f(x)=2x
  4. 非齐次方程: y ′ ′ − 3 y ′ + 2 y = 2 x y'' - 3y' + 2y = 2x y′′3y+2y=2x

例2:

已知二阶非齐次方程的通解为: y = C 1 e − x + C 2 x e − x + sin ⁡ x y = C_1 e^{-x} + C_2 x e^{-x} + \sin x y=C1ex+C2xex+sinx

  1. 齐次方程通解: y c = C 1 e − x + C 2 x e − x y_c = C_1 e^{-x} + C_2 x e^{-x} yc=C1ex+C2xex (对应特征方程有重根 -1)
  2. 特征方程: 特征方程为 ( r + 1 ) 2 = r 2 + 2 r + 1 = 0 (r+1)^2 = r^2 + 2r + 1 = 0 (r+1)2=r2+2r+1=0
  3. 非齐次项: 将通解代入 y ′ ′ + 2 y ′ + y = f ( x ) y'' + 2y' + y = f(x) y′′+2y+y=f(x)。 由于齐次解代入后结果为0,则只需要考虑特解部分。
    d 2 d x 2 ( sin ⁡ x ) + 2 d d x ( sin ⁡ x ) + sin ⁡ x = − sin ⁡ x + 2 cos ⁡ x + sin ⁡ x = 2 cos ⁡ x \frac{d^2}{dx^2}(\sin x) + 2\frac{d}{dx}(\sin x) + \sin x = -\sin x + 2\cos x + \sin x = 2\cos x dx2d2(sinx)+2dxd(sinx)+sinx=sinx+2cosx+sinx=2cosx
    所以 f ( x ) = 2 cos ⁡ x f(x) = 2\cos x f(x)=2cosx
  4. 非齐次方程: y ′ ′ + 2 y ′ + y = 2 cos ⁡ x y'' + 2y' + y = 2\cos x y′′+2y+y=2cosx

例3:

已知二阶非齐次方程的通解为: y = C 1 cos ⁡ ( 2 x ) + C 2 sin ⁡ ( 2 x ) + x 2 y = C_1 \cos(2x) + C_2 \sin(2x) + x^2 y=C1cos(2x)+C2sin(2x)+x2

  1. 齐次方程通解: y c = C 1 cos ⁡ ( 2 x ) + C 2 sin ⁡ ( 2 x ) y_c = C_1 \cos(2x) + C_2 \sin(2x) yc=C1cos(2x)+C2sin(2x)
  2. 特征方程: 特征根为 2 i , − 2 i 2i, -2i 2i,2i, 所以特征方程为 r 2 + 4 = 0 r^2 + 4 = 0 r2+4=0
  3. 非齐次项: 代入 y ′ ′ + 4 y = f ( x ) y'' + 4y = f(x) y′′+4y=f(x)
    ( C 1 cos ⁡ ( 2 x ) + C 2 sin ⁡ ( 2 x ) ) ′ ′ + 4 ( C 1 cos ⁡ ( 2 x ) + C 2 sin ⁡ ( 2 x ) ) + ( x 2 ) ′ ′ + 4 ( x 2 ) = 0 + 2 + 4 x 2 (C_1 \cos(2x) + C_2 \sin(2x))'' + 4(C_1 \cos(2x) + C_2 \sin(2x)) + (x^2)'' + 4(x^2) = 0 + 2 + 4x^2 (C1cos(2x)+C2sin(2x))′′+4(C1cos(2x)+C2sin(2x))+(x2)′′+4(x2)=0+2+4x2
    所以 f ( x ) = 4 x 2 + 2 f(x) = 4x^2 + 2 f(x)=4x2+2
  4. 非齐次方程: y ′ ′ + 4 y = 4 x 2 + 2 y'' + 4y = 4x^2 + 2 y′′+4y=4x2+2

例4:

已知通解为: y = c 1 e x cos ⁡ ( 2 x ) + c 2 e x sin ⁡ ( 2 x ) + e x sin ⁡ x y = c_1 e^x \cos(2x) + c_2 e^x \sin(2x) + e^x \sin x y=c1excos(2x)+c2exsin(2x)+exsinx

  1. 齐次方程通解: y c = c 1 e x cos ⁡ ( 2 x ) + c 2 e x sin ⁡ ( 2 x ) y_c = c_1 e^x \cos(2x) + c_2 e^x \sin(2x) yc=c1excos(2x)+c2exsin(2x) 这对应于特征方程具有复数根 1±2i。

  2. 特征方程: 特征方程为 ( r − ( 1 + 2 i ) ) ( r − ( 1 − 2 i ) ) = ( r − 1 − 2 i ) ( r − 1 + 2 i ) = ( r − 1 ) 2 + 4 = r 2 − 2 r + 5 = 0 (r - (1+2i))(r - (1-2i)) = (r - 1 - 2i)(r - 1 + 2i) = (r-1)^2 + 4 = r^2 - 2r + 5 = 0 (r(1+2i))(r(12i))=(r12i)(r1+2i)=(r1)2+4=r22r+5=0

  3. 非齐次项: 将通解代入 y ′ ′ − 2 y ′ + 5 y = f ( x ) y'' - 2y' + 5y = f(x) y′′2y+5y=f(x)。 我们需要计算特解 y p = e x sin ⁡ x y_p = e^x \sin x yp=exsinx 的二阶导数和一阶导数,然后代入方程。

    y p ′ = e x sin ⁡ x + e x cos ⁡ x y_p' = e^x \sin x + e^x \cos x yp=exsinx+excosx
    y p ′ ′ = e x sin ⁡ x + e x cos ⁡ x + e x cos ⁡ x − e x sin ⁡ x = 2 e x cos ⁡ x y_p'' = e^x \sin x + e^x \cos x + e^x \cos x - e^x \sin x = 2e^x \cos x yp′′=exsinx+excosx+excosxexsinx=2excosx

    代入方程: 2 e x cos ⁡ x − 2 ( e x sin ⁡ x + e x cos ⁡ x ) + 5 ( e x sin ⁡ x ) = 3 e x sin ⁡ x + 0 = 3 e x sin ⁡ x 2e^x \cos x - 2(e^x \sin x + e^x \cos x) + 5(e^x \sin x) = 3e^x \sin x + 0 = 3e^x \sin x 2excosx2(exsinx+excosx)+5(exsinx)=3exsinx+0=3exsinx
    因此, f ( x ) = 3 e x sin ⁡ x f(x) = 3e^x \sin x f(x)=3exsinx

  4. 非齐次方程: y ′ ′ − 2 y ′ + 5 y = 3 e x sin ⁡ x y'' - 2y' + 5y = 3e^x \sin x y′′2y+5y=3exsinx

例5:

已知通解为: y = c 1 e − x + c 2 x e − x + x 2 e − x y = c_1 e^{-x} + c_2 xe^{-x} + x^2 e^{-x} y=c1ex+c2xex+x2ex

  1. 齐次方程通解: y c = c 1 e − x + c 2 x e − x y_c = c_1 e^{-x} + c_2 xe^{-x} yc=c1ex+c2xex (重根 -1)

  2. 特征方程: ( r + 1 ) 2 = r 2 + 2 r + 1 = 0 (r+1)^2 = r^2 + 2r + 1 = 0 (r+1)2=r2+2r+1=0

  3. 非齐次项: 将通解代入 y ′ ′ + 2 y ′ + y = f ( x ) y'' + 2y' + y = f(x) y′′+2y+y=f(x) 我们需要计算特解 y p = x 2 e − x y_p = x^2 e^{-x} yp=x2ex 的导数并代入。

    y p ′ = 2 x e − x − x 2 e − x y_p' = 2xe^{-x} - x^2 e^{-x} yp=2xexx2ex
    y p ′ ′ = 2 e − x − 2 x e − x − ( 2 x e − x − x 2 e − x ) = 2 e − x − 4 x e − x + x 2 e − x y_p'' = 2e^{-x} - 2xe^{-x} - (2xe^{-x} - x^2 e^{-x}) = 2e^{-x} - 4xe^{-x} + x^2 e^{-x} yp′′=2ex2xex(2xexx2ex)=2ex4xex+x2ex

    代入方程,发现 y p ′ ′ + 2 y p ′ + y p = 2 e − x y_p'' + 2y_p' + y_p = 2e^{-x} yp′′+2yp+yp=2ex
    因此, f ( x ) = 2 e − x f(x) = 2e^{-x} f(x)=2ex

  4. 非齐次方程: y ′ ′ + 2 y ′ + y = 2 e − x y'' + 2y' + y = 2e^{-x} y′′+2y+y=2ex

例6 - 8 (请自行尝试,答案在最后):

例6: y = c 1 e 2 x + c 2 e − x + x 2 − 3 x + 2 y = c_1 e^{2x} + c_2 e^{-x} + x^2 - 3x + 2 y=c1e2x+c2ex+x23x+2
例7: y = c 1 cos ⁡ x + c 2 sin ⁡ x + 2 x cos ⁡ x y = c_1 \cos x + c_2 \sin x + 2x \cos x y=c1cosx+c2sinx+2xcosx
例8: y = c 1 e x + c 2 x e x + x 2 e x + 1 y = c_1 e^x + c_2 xe^x + x^2 e^x + 1 y=c1ex+c2xex+x2ex+1

答案:

例6: y ′ ′ + y ′ − 2 y = 2 x 2 − 6 x + 4 y'' + y' - 2y = 2x^2 - 6x + 4 y′′+y2y=2x26x+4

例7: y ′ ′ + y = 4 cos ⁡ x − 4 x sin ⁡ x y'' + y = 4 \cos x - 4x \sin x y′′+y=4cosx4xsinx

例8: y ′ ′ − 2 y ′ + y = 2 e x + 2 x e x y'' - 2y' + y = 2e^x + 2xe^x y′′2y+y=2ex+2xex

请注意,在求解非齐次项时,可能需要用到待定系数法或参数变易法,具体方法取决于非齐次项的形式。 这些例题旨在提升你的解题能力,建议你仔细推导每一步,理解其中的过程。 如有任何问题,请随时提出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值