- 1、人工智能和机器学习概述
- (1)人工智能军备竞赛:百度(自动驾驶)、阿里云(城市大脑)、腾讯(医疗影像)、科大讯飞(智能语音)
- (2)人工智能人才缺口
- (3)人工智能高等教育
- (4)什么是人工智能?是机器像人一样进行感知、认知、决策、执行的人工程序或系统。
- (5)人工智能的起源
- 约翰·麦卡锡:LISP符号处理语言
- 摩尔
- 明斯基
- 塞弗里奇
- 索罗门诺夫:归纳推理机,影响贝叶斯推理过程
- (6)人工智能发展标志性事件
- 1956—达特茅斯会议标志AI诞生
- 1957—罗森布拉特发明感知机
- 1960—通用问题求解系统GPS系统
- 等等
- (7)人工智能发展阶段
- 萌芽期:人工神经网络研究时代开启
- 启动期:人工智能的诞生
- 消沉期:联结主义与符合主义进入消除
- 突破期:BP算法开始研究,人工智能逐渐开始突破
- 发展期:BP网络实现,计算机硬件提升,分布式网络降低计算成本
- 高速发展期:算法产生突破性发展;应用场景开始增多;商业化高速发展
- (8)人工智能的三个层面
- 第一层面:计算智能(能存储能计算)
- 第二层面:感知智能(能听会说,能看会认)类似于人的视觉、听觉、触觉等感知能力
- 第三层面:认知智能(能理解会思考可决策)概念、意识、观念都是认知智能的表现
- (9)人工智能+生活/行业
- 人工智能+金融:大数据征信
- 人工智能+法律:智慧法庭
- 人工智能+医疗
- 人工智能+机器人
- (10)人工智能>机器学习(一种解决方法)>深度学习(更先进的方法)
- (11)逻辑演绎vs归纳总结
- (12)知识工程vs机器学习
- 知识工程/专家系统
- 知识工程的发展和融合:符号逻辑->专家系统->本体概念->语义web->知识图谱
- 机器学习
- 机器学习的应用技术领域
- 计算机视觉:人脸识别;图像分类;目标检测;图像搜索;图像分割;视频监控
- 语音技术:语音识别;语音合成;声纹识别
- 自然语言处理:文本分类;机器翻译;知识图谱;自动问答;信息检测;信息检索;文本生成
- 2、神经网络和深度学习概述
- (1)流行机器学习模型的演变
- 神经网络(人工智能)的三起两落
- (2)传统机器学习:人工设计特征
- 传统机器学习vs深度学习
- (3)从下棋说起
- 游戏对弈机器:从国际象棋到AlphaGo
- Deeper Blue vs AlphaGo
- (4)一切的开始:感知机
- (5)传统神经网络
- (6)深度学习发展
- (7)生成对抗网络GANs
- (8)神经网络结构的发展
- (1)流行机器学习模型的演变
- 未完待续...
2021北京交通大学《深度学习》平台课—第1讲:绪论
最新推荐文章于 2024-09-26 15:26:53 发布