定积分之几种常见曲线

弧微分的基本公式: ( d s ) 2 = ( d x ) 2 + ( d y ) 2 , (ds)^2=(dx)^2+(dy)^2, (ds)2=(dx)2+(dy)2其中:
(1)设 L : y = f ( x ) , 则 d s = 1 + f    ′    2 ( x )    d x ; ( 公 式 1 − 1 ) L:y=f(x),则ds=\sqrt{1+f\;'\;^2(x)}\;dx;\text ({公式1-1}) Ly=f(x)ds=1+f2(x) dx11
(2)设 L : { x = ϕ ( t ) , y = ψ ( t ) , 则 d s = ϕ    ′    2 ( t ) + ψ    ′    2 ( t )    d t ; ( 公 式 1 − 2 ) L: \begin{cases} x=\phi(t), \\ y=\psi(t),\\ \end{cases}则ds=\sqrt{\phi\;'\;^2(t)+\psi\;'\;^2(t)}\;dt;\text ({公式1-2}) L:{x=ϕ(t),y=ψ(t)ds=ϕ2(t)+ψ2(t) dt12
(3)设 L : r = r ( θ ) , 则 d s = r 2 ( θ ) + r    ′    2 ( θ )    d θ ; ( 公 式 1 − 3 ) L:r=r(\theta),则ds=\sqrt{r^2(\theta)+r\;'\;^2(\theta)}\;d\theta;\text ({公式1-3}) Lr=r(θ)ds=r2(θ)+r2(θ) dθ13

定积分的几何应用
1.面积
(1) 设 D 由 y = f ( x ) ≥ 0 , x = a 及 x = b ( a < b ) 围 成 , 则 D 的 面 积 为 A = ∫ a b f ( x )    d x ( 公 式 1 − 4 ) 设D由y=f(x)\geq0,x=a及x=b(a<b)围成,\\ 则D的面积为A=\int_a^bf(x)\;dx \text ({公式1-4}) Dy=f(x)0x=ax=b(a<b)DA=abf(x)dx14)

(2) 设 D 是 由 r = r ( θ ) ( α ≤ θ ≤ β ) 围 成 , 则 用 元 素 法 求 D 的 面 积 , 如 下 : 取 d θ ⊂ [ α , β ] , 则 d A = 1 2 r 2 ( θ )    d θ , 于 是 D 的 面 积 为 A = 1 2 ∫ α β r 2 ( θ )    d θ ( 公 式 1 − 5 ) 设D是由r=r(\theta)(\alpha\leq\theta\leq\beta)围成,则用元素法求D的面积,如下:\\ 取d\theta\subset[\alpha,\beta],则dA=\frac{1}{2}r^2(\theta)\;d\theta,\\ 于是D的面积为A=\frac{1}{2}\int_\alpha^\beta {r^2(\theta)\;d\theta} \text ({公式1-5}) Dr=r(θ)(αθβ)Ddθ[αβ]dA=21r2(θ)dθDA=21αβr2(θ)dθ15)

(旋转曲面的面积)
设 L : y = f ( x ) ( a ≤ x ≤ b ) , 则 L 绕 x 轴 旋 转 所 得 旋 转 体 侧 面 积 的 求 法 如 下 : 取 [ x , x + d x ] ⊂ [ a , b ] , 则 d A = 2 π ⋅ ∣ f ( x ) ∣    d s , 于 是 侧 面 积 为 A = 2 π ∫ a b ∣ f ( x ) ∣    d s = 2 π ∫ a b ∣ f ( x ) ∣ ⋅ 1 + f    ′    2 ( x )    d x ( 公 式 1 − 6 ) 设L:y=f(x)(a\leq x\leq b),则L绕x轴旋转所得旋转体侧面积的求法如下:\\ 取[x,x+dx]\subset[a,b],则dA=2\pi\cdot|f(x)|\;ds,于是侧面积为\\ A=2\pi\int_a^b{|f(x)|\;ds}=2\pi\int_a^b{|f(x)|\cdot\sqrt{1+f\;'\;^2(x)}\;dx} \text ({公式1-6}) L:y=f(x)(axb)Lx[x,x+dx][ab]dA=2πf(x)dsA=2πabf(x)ds=2πabf(x)1+f2(x) dx16)

2.体积
(1) 设 L : y = f ( x ) ( a ≤ x ≤ b ) , 则 L 与 x 轴 围 成 的 图 形 绕 x 轴 旋 转 一 周 所 得 旋 转 体 的 体 积 为 V x = π ⋅ ∫ a b f 2 ( x )    d x ( 公 式 1 − 7 ) 设L:y=f(x)(a\leq x\leq b),则L与x轴围成的图形绕x轴旋转一周所得旋转体的体积为\\ V_x=\pi\cdot\int_a^b{f^2(x)\;dx} \text ({公式1-7}) Ly=f(x)(axb)LxxVx=πabf2(x)dx17)
(2) L : y = f ( x ) ( a ≤ x ≤ b ) , 则 L 与 x 轴 围 成 的 图 形 绕 y 轴 旋 转 一 周 所 得 旋 转 体 的 体 积 为 V y = 2 π ⋅ ∫ a b ∣ x ∣ ⋅ ∣ f ( x ) ∣    d x ( 公 式 1 − 8 ) L:y=f(x)(a\leq x\leq b),则L与x轴围成的图形绕y轴旋转一周所得旋转体的体积为\\ V_y=2\pi\cdot\int_a^b{|x|\cdot|f(x)|\;dx} \text ({公式1-8}) Ly=f(x)(axb)LxyVy=2πabxf(x)dx18)
(3) 极 坐 标 系 下 绕 极 轴 旋 转 一 周 旋 转 体 体 积 公 式 为 V = 2 3 π ∫ α β r 3 ( θ ) ⋅ sin ⁡ θ    d θ ( 公 式 1 − 9 ) 极坐标系下绕极轴旋转一周旋转体体积公式为\\ V=\frac{2}{3}\pi\int_\alpha^\beta r^3(\theta)\cdot \sin\theta\;d\theta\text ({公式1-9}) V=32παβr3(θ)sinθdθ19)
极坐标系下绕极轴旋转一周旋转体体积公式推导

一、摆线

极坐标或参数形式:
   { x = a ( t − s i n t ) , y = a ( 1 − c o s t ) . \; \begin{cases} x=a(t-sint), \\ y=a(1-cost).\\ \end{cases} {x=a(tsint),y=a(1cost).
摆线图形:
摆线图形
( a > 0 , 0 ≤ t ≤ 2 π ) (a>0,0\leq t\leq2\pi) (a>00t2π)

①弧长

由公式1-2,弧微分: d s = [ a ( t − sin ⁡ t ) ]    ′    2 + [ a ( 1 − cos ⁡ t ) ]    ′    2    d t = [ a ( 1 − cos ⁡ t ) ] 2 + ( a ⋅ sin ⁡ t ) 2    d t = a 2 − 2 a 2 ⋅ cos ⁡ t + a 2 ⋅ cos ⁡ 2 t + a 2 ⋅ sin ⁡ 2 t    d t = a 2 − 2 a 2 ⋅ cos ⁡ t + a 2    d t = 2 a ⋅ 1 − cos ⁡ t    d t = 2 a ⋅ 1 − cos ⁡ t 2    d t = 2 a ⋅ 1 − 1 + cos ⁡ t 2    d t = 2 a ⋅ 1 − cos ⁡ 2 t 2    d t = 2 a ⋅ ∣ sin ⁡ t 2 ∣    d t \begin{aligned} ds & =\sqrt{[a( t-\sin t)]\;'\;^2+[a(1-\cos t)]\;'\;^2}\;dt \\ & =\sqrt{[a(1-\cos t)]^2+(a\cdot\sin t)^2}\;dt \\ & =\sqrt{a^2-2a^2\cdot \cos t+a^2\cdot\cos^2 t+a^2\cdot\sin^2 t}\;dt \\ & =\sqrt{a^2-2a^2\cdot \cos t+a^2}\;dt \\ & =\sqrt2a\cdot\sqrt{1-\cos t}\;dt \\ & =2a\cdot\sqrt\frac{1-\cos t}{2}\;dt \\ & =2a\cdot\sqrt{1-\frac{1+\cos t}{2}}\;dt \\ & =2a\cdot\sqrt{1-\cos^2\frac{ t}{2}}\;dt \\ & =2a\cdot|\sin\frac{t}{2}|\;dt \\ \end{aligned} ds=[a(tsint)]2+[a(1cost)]2 dt=[a(1cost)]2+(asint)2 dt=a22a2cost+a2cos2t+a2sin2t dt=a22a2cost+a2 dt=2 a1cost dt=2a21cost dt=2a121+cost dt=2a1cos22t dt=2asin2tdt
弧长: S = ∫ 0 2 π 2 a ⋅ ∣ sin ⁡ t 2 ∣    d t = 4 a ∫ 0 2 π ∣ s i n t 2 ∣    d ( t 2 ) = 4 a ∫ 0 π sin ⁡ t    d t = 8 a S=\int_0^{2\pi} {2a\cdot|\sin\frac{t}{2}}|\;dt =4a\int_0^{2\pi}|sin\frac{t}{2}|\;d(\frac{t}{2}) =4a\int_0^{\pi}\sin t\;dt =8a S=02π2asin2tdt=4a02πsin2td(2t)=4a0πsintdt=8a

②面积

1.平面图形的面积

摆线一拱与 x x x轴围成的面积由公式1-4, D D D y , x = 0 , x = 2 π a y,x=0,x=2\pi a yx=0,x=2πa围成,则 D = ∫ 0 2 π a f ( x )    d x D=\int_0^{2\pi a}f(x)\;dx D=02πaf(x)dx,再根据参数方程换元。
∫ 0 2 π a    d x \int_0^{2\pi a}\;dx 02πadx ⟹ x = a ( t − s i n t ) \overset{x=a(t-sint)}\Longrightarrow x=a(tsint) ∫ 0 2 π d [ a ( t − s i n t ) ] \int_0^{2\pi }d[a(t-sint)] 02πd[a(tsint)]
A = ∫ 0 2 π a ( 1 − cos ⁡ t )    d [ a ( t − sin ⁡ t ) ] = a 2 ∫ 0 2 π ( 1 − cos ⁡ t ) 2    d t = 8 a 2 ∫ 0 2 π ( 1 − 1 + c o s t 2 ) 2    d ( t 2 ) = 8 a 2 ∫ 0 π s i n 4    d t = 16 a 2 ∫ 0 π 2 s i n 4    d t = 16 a 2 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 3 π a 2 \begin{aligned} A & =\int_0^{2\pi }a(1-\cos t)\;d[a(t-\sin t)] \\ & =a^2\int_0^{2\pi }(1-\cos t)^2\;dt \\ & =8a^2\int_0^{2\pi }(1-\frac{1+cost}{2})^2\;d(\frac{t}{2}) \\ & =8a^2\int_0^{\pi }sin^4\;dt \\ & =16a^2\int_0^{\frac{\pi}{2} }sin^4\;dt \\ & =16a^2\cdot\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} \\ & =3\pi a^2 \\ \end{aligned} A=02πa(1cost)d[a(tsint)]=a202π(1cost)2dt=8a202π(121+cost)2d(2t)=8a20πsin4dt=16a202πsin4dt=16a243212π=3πa2

2.旋转曲面的侧面积(绕x轴旋转)

①弧长中已经计算出来,弧微分: d s = 2 a ⋅ ∣ sin ⁡ t 2 ∣    d t ds=2a\cdot|\sin\frac{t}{2}|\;dt ds=2asin2tdt
由公式1-6,面积元素:
d A = 2 π ⋅ ∣ f ( x ) ∣    d s = 2 π ⋅ ∣ a ( 1 − c o s t ) ∣ ⋅ 2 a ⋅ ∣ sin ⁡ t 2 ∣    d t = 4 a 2 π ⋅ ∣ 1 − c o s t ∣ ⋅ ∣ sin ⁡ t 2 ∣    d t dA=2\pi\cdot|f(x)|\;ds=2\pi\cdot|a(1-cost)|\cdot2a\cdot|\sin\frac{t}{2}|\;dt\\ =4a^2\pi\cdot|1-cost|\cdot|\sin\frac{t}{2}|\;dt dA=2πf(x)ds=2πa(1cost)2asin2tdt=4a2π1costsin2tdt
A = ∫ 0 2 π 4 a 2 π ⋅ ∣ 1 − c o s t ∣ ⋅ ∣ sin ⁡ t 2 ∣    d t = 16 a 2 π ∫ 0 2 π ∣ 1 − cos ⁡ t 2 ∣ ⋅ ∣ sin ⁡ t 2 ∣    d ( t 2 ) = 16 a 2 π ∫ 0 2 π ∣ 1 − cos ⁡ 2 t 2 ∣ ⋅ ∣ sin ⁡ t 2 ∣    d ( t 2 ) = 16 a 2 π ∫ 0 π sin ⁡ 3 t    d t = 32 a 2 π ∫ 0 π 2 sin ⁡ 3 t    d t = 32 a 2 π ⋅ 2 3 ⋅ 1 = 64 3 π a 2 \begin{aligned} A & =\int_0^{2\pi }4a^2\pi\cdot|1-cost|\cdot|\sin\frac{t}{2}|\;dt \\ & =16a^2\pi\int_0^{2\pi }|\frac{1-\cos t}{2}|\cdot|\sin\frac{t}{2}|\;d(\frac{t}{2}) \\ & =16a^2\pi\int_0^{2\pi }|1-\cos^2\frac{t}{2}|\cdot|\sin\frac{t}{2}|\;d(\frac{t}{2}) \\ & =16a^2\pi\int_0^{\pi }\sin^3t\;dt \\ & =32a^2\pi\int_0^{\frac{\pi}{2} }\sin^3t\;dt \\ & =32a^2\pi\cdot\frac{2}{3}\cdot1 \\ & =\frac{64}{3}\pi a^2 \end{aligned} A=02π4a2π1costsin2tdt=16a2π02π21costsin2td(2t)=16a2π02π1cos22tsin2td(2t)=16a2π0πsin3tdt=32a2π02πsin3tdt=32a2π321=364πa2

③体积

1.绕x轴旋转

摆线一拱与 x x x轴围成的面积 D D D y , x = 0 , x = 2 π a y,x=0,x=2\pi a yx=0,x=2πa围成,则该面积绕 x x x轴旋转一周后,由公式1-7,
V x = π ⋅ ∫ a b f 2 ( x )    d x = π ⋅ ∫ 0 2 π a f 2 ( x )    d x V_x=\pi\cdot\int_a^b{f^2(x)\;dx}=\pi\cdot\int_0^{2\pi a}{f^2(x)\;dx} Vx=πabf2(x)dx=π02πaf2(x)dx,再根据参数方程换元。
∫ 0 2 π a d x \int_0^{2\pi a}dx 02πadx ⟹ x = a ( t − s i n t ) \overset{x=a(t-sint)}\Longrightarrow x=a(tsint) ∫ 0 2 π d [ a ( t − s i n t ) ] \int_0^{2\pi }d[a(t-sint)] 02πd[a(tsint)]
V x = π ∫ 0 2 π [ a ( 1 − cos ⁡ t ) ] 2    d [ a ( t − sin ⁡ t ) ] = π a 3 ∫ 0 2 π ( 1 − cos ⁡ t ) 3    d t = 16 π a 3 ∫ 0 2 π ( 1 − cos ⁡ t 2 ) 3    d ( t 2 ) = 16 π a 3 ∫ 0 2 π ( 1 − 1 + cos ⁡ t 2 ) 3    d ( t 2 ) = 16 π a 3 ∫ 0 2 π ( 1 − cos ⁡ 2 t 2 ) 3    d ( t 2 ) = 16 π a 3 ∫ 0 π sin ⁡ t 6    d t = 32 π a 3 ∫ 0 π 2 sin ⁡ t 6    d t = 32 π a 3 ⋅ 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 5 π 2 ⋅ a 3 \begin{aligned} V_x & =\pi\int_0^{2\pi }[a(1-\cos t)]^2\;d[a(t-\sin t)] \\ & =\pi a^3\int_0^{2\pi }(1-\cos t)^3\;dt \\ & =16\pi a^3\int_0^{2\pi }(\frac{1-\cos t}{2})^3\;d(\frac{t}{2}) \\ & =16\pi a^3\int_0^{2\pi }(1-{\frac{1+\cos t}{2}})^3\;d(\frac{t}{2}) \\ & =16\pi a^3\int_0^{2\pi }(1-\cos^2 \frac{t}{2})^3\;d(\frac{t}{2})\\ & =16\pi a^3\int_0^{\pi }\sin t^6\;dt \\ & =32\pi a^3\int_0^{\frac{\pi}{2} }\sin t^6\;dt \\ & =32\pi a^3\cdot \frac{5}{6}\cdot \frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} \\ & =5\pi^2\cdot a^3 \end{aligned} Vx=π02π[a(1cost)]2d[a(tsint)]=πa302π(1cost)3dt=16πa302π(21cost)3d(2t)=16πa302π(121+cost)3d(2t)=16πa302π(1cos22t)3d(2t)=16πa30πsint6dt=32πa302πsint6dt=32πa36543212π=5π2a3

2.绕y轴旋转

摆线一拱与 x x x轴围成的面积 D D D y , x = 0 , x = 2 π a y,x=0,x=2\pi a yx=0,x=2πa围成,则该面积绕 y y y轴旋转一周后,由公式1-8,
V y = 2 π ⋅ ∫ a b ∣ x ∣ ⋅ ∣ f ( x ) ∣    d x V_y=2\pi\cdot\int_a^b{|x|\cdot|f(x)|\;dx} Vy=2πabxf(x)dx,再根据参数方程换元。
∫ 0 2 π a d x \int_0^{2\pi a}dx 02πadx ⟹ x = a ( t − s i n t ) \overset{x=a(t-sint)}\Longrightarrow x=a(tsint) ∫ 0 2 π d [ a ( t − s i n t ) ] \int_0^{2\pi }d[a(t-sint)] 02πd[a(tsint)]

V y = 2 π ∫ 0 2 π ∣ a ( t − sin ⁡ t ) ∣ ⋅ ∣ a ( 1 − cos ⁡ t ) ∣    d [ a ( t − sin ⁡ t ) ] = 2 π a 3 ∫ 0 2 π ∣ t − sin ⁡ t ∣ ⋅ ( 1 − cos ⁡ t ) 2    d t ( 令 t − π = x ) ⇒      = 2 π a 3 ∫ − π π ∣ ( x + π ) − sin ⁡ ( x + π ) ∣ ⋅ [ 1 − cos ⁡ ( x + π ) ] 2    d x = 2 π a 3 ∫ − π π [    ∣ x + sin ⁡ x ∣ ⋅ ( 1 + cos ⁡ x ) 2 + π ⋅ ( 1 + cos ⁡ x ) 2    ]    d x ( 此 时 ∫ − π π d x 为 对 称 区 域 , 而 x 与 s i n x 为 奇 函 数 , 所 以 ∫ − π π ∣ x + sin ⁡ x ∣ ⋅ ( 1 + cos ⁡ x ) 2    d x = 0 ) = 2 π a 3 ∫ − π π π ( 1 + cos ⁡ x ) 2    d x = 16 π 2 a 3 ∫ − π π ( 1 + cos ⁡ x 2 ) 2    d ( x 2 ) = 16 π 2 a 3 ∫ − π π cos ⁡ 4 x 2    d ( x 2 ) = 32 π 2 a 3 ∫ 0 π 2 cos ⁡ 4 x    d x = 32 π 2 a 3 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 6 π 3 a 3 \begin{aligned} V_y & =2\pi\int_0^{2\pi }|a(t-\sin t)|\cdot|a(1-\cos t)|\;d[a(t-\sin t)] \\ & =2\pi a^3\int_0^{2\pi }|t-\sin t|\cdot(1-\cos t)^2\;dt \\ & (令t-\pi=x)\Rightarrow\;\;=2\pi a^3\int_{-\pi}^{\pi }|(x+\pi)-\sin (x+\pi)|\cdot[1-\cos (x+\pi)]^2\;dx\\ & =2\pi a^3\int_{-\pi}^{\pi }[\;|x+\sin x|\cdot(1+\cos x)^2+\pi\cdot(1+\cos x)^2\;]\;dx \\ &(此时\int_{-\pi}^{\pi }dx为对称区域,而x与sinx为奇函数,所以\int_{-\pi}^{\pi }|x+\sin x|\cdot(1+\cos x)^2\;dx=0)\\ & =2\pi a^3\int_{-\pi}^{\pi}\pi(1+\cos x)^2\;dx \\ & =16\pi^2a^3\int_{-\pi}^{\pi} (\frac{1+\cos x}{2})^2\;d(\frac{x}{2})\\ & =16\pi^2a^3\int_{-\pi}^{\pi} \cos^4\frac{x}{2}\;d(\frac{x}{2}) \\ & =32\pi^2a^3\int_0^\frac{\pi}{2} \cos^4x\;dx \\ & =32\pi^2a^3\cdot\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} \\ & =6\pi^3a^3 \end{aligned} Vy=2π02πa(tsint)a(1cost)d[a(tsint)]=2πa302πtsint(1cost)2dt(tπ=x)=2πa3ππ(x+π)sin(x+π)[1cos(x+π)]2dx=2πa3ππ[x+sinx(1+cosx)2+π(1+cosx)2]dx(ππdxxsinxππx+sinx(1+cosx)2dx=0)=2πa3πππ(1+cosx)2dx=16π2a3ππ(21+cosx)2d(2x)=16π2a3ππcos42xd(2x)=32π2a302πcos4xdx=32π2a343212π=6π3a3

二、心形线

直角坐标形式:
x 2 + y 2 − a x = a x 2 + y 2 x^2+y^2-ax=a\sqrt {x^2+y^2} x2+y2ax=ax2+y2
极坐标或参数形式:
r = a ( 1 + cos ⁡ θ ) r=a(1+\cos \theta) r=a(1+cosθ)

令 { x = r cos ⁡ θ y = r sin ⁡ θ , 则 x 2 + y 2 − a x = a x 2 + y 2 可 表 示 为 ( r cos ⁡ θ ) 2 + ( r sin ⁡ θ ) 2 − a ( r cos ⁡ θ ) = a ( r cos ⁡ θ ) 2 + ( r sin ⁡ θ 2 ) 即 r 2 − a ⋅ r cos ⁡ θ = a ⋅ r ⇒ r = a ( 1 + cos ⁡ θ ) 令 \begin{cases} x=r \cos \theta \\ y=r \sin \theta \\ \end{cases},则x^2+y^2-ax=a\sqrt {x^2+y^2}可表示为\\ (r \cos \theta)^2+(r \sin \theta)^2-a(r \cos \theta)=a\sqrt {(r \cos \theta)^2+(r \sin \theta^2}) \\ 即r^2-a\cdot r \cos \theta= a\cdot r\\ \Rightarrow r=a(1+\cos \theta) {x=rcosθy=rsinθx2+y2ax=ax2+y2 (rcosθ)2+(rsinθ)2a(rcosθ)=a(rcosθ)2+(rsinθ2 )r2arcosθ=arr=a(1+cosθ)

r = a ( 1 + cos ⁡ θ ) r=a(1+\cos \theta) r=a(1+cosθ)心形线图形:r=a(1+cosθ)图像
将上图顺时针旋转90°得到 r = a ( 1 − sin ⁡ θ ) r=a(1-\sin\theta) r=a(1sinθ)
将上图水平翻转得到 r = a ( 1 − cos ⁡ θ ) r=a(1-\cos \theta) r=a(1cosθ)
将上图逆时针旋转90°得到 r = a ( 1 + sin ⁡ θ ) r=a(1+\sin \theta) r=a(1+sinθ)

( a > 0 , 0 ≤ θ ≤ 2 π ) (a>0,0\leq \theta\leq2\pi) (a>00θ2π)

①弧长

由公式1-3,弧微分: d s = [ a ( 1 + cos ⁡ θ ) ] 2 + [ a ( 1 + cos ⁡ θ ) ]    ′    2    d θ = a 2 + 2 a 2 ⋅ cos ⁡ θ + a 2 ⋅ cos ⁡ 2 θ + a 2 ⋅ sin ⁡ 2 θ    d θ = a 2 + 2 a 2 ⋅ cos ⁡ θ + a 2    d θ = 2 a ⋅ 1 + cos ⁡ θ    d θ = 2 a ⋅ 1 + cos ⁡ θ 2    d θ = 2 a ⋅ c o s 2 θ 2    d θ = 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ \begin{aligned} ds & =\sqrt{[a(1+\cos\theta)]^2+[a(1+\cos\theta)]\;'\;^2}\;d\theta \\ & =\sqrt{a^2+2a^2\cdot \cos\theta+a^2\cdot\cos^2\theta+a^2\cdot\sin^2 \theta}\;d\theta \\ & =\sqrt{a^2+2a^2\cdot \cos\theta+a^2}\;d\theta \\ & =\sqrt2a\cdot\sqrt{1+\cos\theta}\;d\theta \\ & =2a\cdot\sqrt\frac{1+\cos\theta}{2}\;d\theta \\ & =2a\cdot\sqrt{cos^2\frac{\theta}{2}}\;d\theta \\ & =2a\cdot|\cos\frac{\theta}{2}|\;d\theta \\ \end{aligned} ds=[a(1+cosθ)]2+[a(1+cosθ)]2 dθ=a2+2a2cosθ+a2cos2θ+a2sin2θ dθ=a2+2a2cosθ+a2 dθ=2 a1+cosθ dθ=2a21+cosθ dθ=2acos22θ dθ=2acos2θdθ
(图像关于极轴对称,因此整个弧长等于2倍上半轴的弧长)
弧长: S = 2 ∫ 0 π 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ = 8 a ∫ 0 π ∣ c o s θ 2 ∣    d ( θ 2 ) = 8 a ∫ 0 π 2 cos ⁡ θ    d θ = 8 a S=2\int_0^{\pi} {2a\cdot|\cos\frac{\theta}{2}|} \;d\theta =8a\int_0^{\pi}|cos\frac{\theta}{2}|\;d(\frac{\theta}{2}) =8a\int_0^\frac{\pi}{2}\cos\theta\;d\theta =8a S=20π2acos2θdθ=8a0πcos2θd(2θ)=8a02πcosθdθ=8a

②面积

1.平面图形的面积

(图像关于极轴对称,因此整个面积等于2倍上半轴的面积)
由公式1-5,
A = 2 ⋅ 1 2 ∫ 0 π [ a ( 1 + cos ⁡ θ ) ] 2    d θ = a 2 ∫ 0 π ( 1 + cos ⁡ θ ) 2    d θ = 8 a 2 ∫ 0 π ( 1 + cos ⁡ θ 2 ) 2    d ( θ 2 ) = 8 a 2 ∫ 0 π 2 cos ⁡ 4 θ    d θ = 8 a 2 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 = 3 2 π a 2 \begin{aligned} A & =2\cdot\frac{1}{2}\int_0^\pi {[a(1+\cos \theta)]^2\;d\theta} \\ & =a^2\int_0^\pi {(1+\cos \theta)^2\;d\theta} \\ & =8a^2\int_{0}^{\pi} (\frac{1+\cos\theta}{2})^2\;d(\frac{\theta}{2})\\ & =8a^2\int_{0}^\frac{\pi}{2} \cos^4\theta\;d\theta \\ & =8a^2\cdot\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2} \\ & =\frac{3}{2}\pi a^2\\ \end{aligned} \\ A=2210π[a(1+cosθ)]2dθ=a20π(1+cosθ)2dθ=8a20π(21+cosθ)2d(2θ)=8a202πcos4θdθ=8a243212π=23πa2

2.旋转曲面的侧面积(绕极轴旋转)

①弧长中已经计算出来,弧微分: d s = 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ ds=2a\cdot|\cos\frac{\theta}{2}|\;d\theta ds=2acos2θdθ
由公式1-6,面积元素:
d A = 2 π ⋅ ∣ f ( x ) ∣    d s = 2 π ⋅ ∣ r ⋅ sin ⁡ θ ∣ ⋅ 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ ( 而 r = a ( 1 + cos ⁡ θ ) ) = 2 π ⋅ ∣ a ( 1 + cos ⁡ θ ) ⋅ sin ⁡ θ ∣ ⋅ 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ dA=2\pi\cdot|f(x)|\;ds=2\pi\cdot|r\cdot \sin\theta|\cdot 2a\cdot|\cos\frac{\theta}{2}|\;d\theta\\ (而r=a(1+\cos \theta))=2\pi\cdot|a(1+\cos \theta)\cdot \sin\theta|\cdot 2a\cdot|\cos\frac{\theta}{2}|\;d\theta dA=2πf(x)ds=2πrsinθ2acos2θdθ(r=a(1+cosθ))=2πa(1+cosθ)sinθ2acos2θdθ
A = ∫ 0 π 2 π ⋅ ∣ a ( 1 + cos ⁡ θ ) ⋅ sin ⁡ θ ∣ ⋅ 2 a ⋅ ∣ cos ⁡ θ 2 ∣    d θ = 8 π a 2 ∫ 0 π ∣ 1 + cos ⁡ θ 2 ⋅ 2 sin ⁡ θ 2 ⋅ 2 cos ⁡ θ 2 ∣ ⋅ ∣ cos ⁡ θ 2 ∣    d ( θ 2 ) = 32 π a 2 ∫ 0 π ∣ cos ⁡ 4 θ 2 ⋅ sin ⁡ θ 2 ∣    d ( θ 2 ) = − 32 π a 2 ∫ 0 π 2 cos ⁡ 4 θ    d ( cos ⁡ θ ) = − 32 π a 2 ∫ 1 0 θ 4    d θ = 32 π a 2 ∫ 0 1 θ 4    d θ = 32 5 π a 2 \begin{aligned} A & =\int_0^{\pi }2\pi\cdot|a(1+\cos \theta)\cdot \sin\theta|\cdot 2a\cdot|\cos\frac{\theta}{2}|\;d\theta \\ & =8\pi a^2\int_0^{\pi }|\frac{1+\cos \theta}{2}\cdot2\sin\frac{\theta}{2}\cdot2\cos\frac{\theta}{2}|\cdot|\cos\frac{\theta}{2}|\;d(\frac{\theta}{2}) \\ & =32\pi a^2\int_0^{\pi }|\cos^4\frac{\theta}{2}\cdot\sin\frac{\theta}{2}|\;d(\frac{\theta}{2}) \\ & =-32\pi a^2\int_0^{\frac{\pi}{2} }\cos^4\theta\;d(\cos\theta) \\ & =-32\pi a^2\int_1^{0}\theta^4\;d\theta \\ & =32\pi a^2\int_0^{1}\theta^4\;d\theta \\ & =\frac{32}{5}\pi a^2 \end{aligned} A=0π2πa(1+cosθ)sinθ2acos2θdθ=8πa20π21+cosθ2sin2θ2cos2θcos2θd(2θ)=32πa20πcos42θsin2θd(2θ)=32πa202πcos4θd(cosθ)=32πa210θ4dθ=32πa201θ4dθ=532πa2

③体积

极坐标系下绕极轴旋转一周旋转体体积由公式1-9,则
V = 2 3 π ∫ 0 π [ a ( 1 + cos ⁡ θ ) ] 3 ⋅ sin ⁡ θ    d θ = − 2 3 π a 3 ∫ 0 π ( 1 + cos ⁡ θ ) 3    d ( cos ⁡ θ ) = − 2 3 π a 3 ∫ 1 − 1 ( 1 + θ ) 3    d θ = 2 3 π a 3 ∫ − 1 1 ( 1 + θ ) 3    d ( 1 + θ ) = 2 3 π a 3 ∫ 0 2 θ 3    d θ = 8 3 π a 3 \begin{aligned} V & =\frac{2}{3}\pi\int_0^\pi [a(1+\cos\theta)]^3\cdot \sin\theta\;d\theta \\ & =-\frac{2}{3}\pi a^3\int_0^\pi {(1+\cos \theta)^3\;d(\cos\theta)} \\ & =-\frac{2}{3}\pi a^3\int_1^{-1} {(1+\theta)^3\;d\theta} \\ & =\frac{2}{3}\pi a^3\int_{-1}^{1} {(1+\theta)^3\;d(1+\theta)} \\ & =\frac{2}{3}\pi a^3\int_0^2 {\theta^3\;d\theta} \\ & =\frac{8}{3}\pi a^3\\ \end{aligned} \\ V=32π0π[a(1+cosθ)]3sinθdθ=32πa30π(1+cosθ)3d(cosθ)=32πa311(1+θ)3dθ=32πa311(1+θ)3d(1+θ)=32πa302θ3dθ=38πa3

三、双扭线

直角坐标形式:
( x 2 + y 2 ) 2 = a 2 ( x 2 − y 2 ) (x^2+y^2)^2=a^2(x^2-y^2) (x2+y2)2=a2(x2y2)
极坐标或参数形式:
r 2 = a 2 c o s 2 θ r^2=a^2cos2\theta r2=a2cos2θ

令 { x = r cos ⁡ θ y = r sin ⁡ θ , 则 ( x 2 + y 2 ) 2 = a 2 ( x 2 − y 2 ) 可 表 示 为 [ ( r cos ⁡ θ ) 2 + ( r sin ⁡ θ ) 2 ] 2 = a 2 [ ( r cos ⁡ θ ) 2 − ( r sin ⁡ θ ) 2 ) ] 即 r 2 ( s i n 2 θ + c o s 2 θ ) = a 2 ⋅ r 2 ( cos ⁡ 2 θ − sin ⁡ 2 θ ) ⇒ r 2 = a 2 c o s 2 θ 令 \begin{cases} x=r \cos \theta \\ y=r \sin \theta \\ \end{cases},则(x^2+y^2)^2=a^2(x^2-y^2)可表示为\\ [(r \cos \theta)^2+(r \sin \theta)^2]^2=a^2[(r \cos \theta)^2-(r \sin \theta)^2)] \\ 即r^2(sin^2\theta+cos^2\theta) =a^2\cdot r^2(\cos^2\theta-\sin^2\theta)\\ \Rightarrow r^2=a^2cos2\theta {x=rcosθy=rsinθ(x2+y2)2=a2(x2y2)[(rcosθ)2+(rsinθ)2]2=a2[(rcosθ)2(rsinθ)2)]r2(sin2θ+cos2θ)=a2r2(cos2θsin2θ)r2=a2cos2θ

双扭线图形:
伯努利双扭线

( a > 0 , 0 ≤ θ ≤ 2 π ) (a>0,0\leq \theta\leq2\pi) (a>00θ2π)

①弧长

由公式1-2,弧微分: d s = a 2 c o s 2 θ + ( a 2 cos ⁡ 2 θ )    ′    2    d θ = a 2 c o s 2 θ + ( a ⋅ − sin ⁡ 2 θ ⋅ 2 2 cos ⁡ 2 θ ) 2    d θ = a 2 c o s 2 θ + a 2 ⋅ sin ⁡ 2 2 θ cos ⁡ 2 θ    d θ = a 2 ( cos ⁡ 2 2 θ cos ⁡ 2 θ + sin ⁡ 2 2 θ cos ⁡ 2 θ )    d θ = a ⋅ 1 cos ⁡ 2 θ    d θ = a ⋅ sec ⁡ 2 θ    d θ \begin{aligned} ds & =\sqrt{a^2cos2\theta+\sqrt{(a^2\cos2\theta)}\;'\;^2}\;d\theta \\ & =\sqrt{a^2cos2\theta+(a\cdot{\frac{-\sin2\theta\cdot2}{2\sqrt{\cos2\theta}}}})^2\;d\theta \\ & =\sqrt{a^2cos2\theta+a^2\cdot\frac{\sin^2 2\theta}{\cos2\theta}}\;d\theta \\ & =\sqrt{a^2(\frac{\cos^2 2\theta}{\cos2\theta}+\frac{\sin^2 2\theta}{\cos2\theta}})\;d\theta \\ & =a\cdot\sqrt{\frac{1}{\cos2\theta}}\;d\theta \\ & =a\cdot\sqrt{\sec2\theta}\;d\theta \end{aligned} ds=a2cos2θ+(a2cos2θ) 2 dθ=a2cos2θ+(a2cos2θ sin2θ2 )2dθ=a2cos2θ+a2cos2θsin22θ dθ=a2(cos2θcos22θ+cos2θsin22θ )dθ=acos2θ1 dθ=asec2θ dθ
(图像关于 x 、 y x、y xy轴对称,因此整个弧长等于4倍第一象限的弧长)
弧长:
S = 4 ∫ 0 π 4 a ⋅ sec ⁡ 2 θ    d θ = 2 a ∫ 0 π 4 sec ⁡ 2 θ    d ( 2 θ ) = 2 a ∫ 0 π 2 sec ⁡ θ    d θ ( 令 cos ⁡ θ = x 2 , 则 sec ⁡ θ = 1 x , 积 分 上 下 限 由 ∫ 0 π 2 变 成 ∫ 1 0 ) = 2 a ∫ 1 0 1 x    d ( a r c c o s x 2 )   = 2 a ∫ 1 0 1 x ⋅ − 1 ⋅ 2 x 1 − ( x 2 ) 2    d x = 4 a ∫ 0 1 1 1 − x 4    d x \begin{aligned} S & =4\int_0^{\frac{\pi}{4}} a\cdot\sqrt{\sec2\theta}\;d\theta \\ & =2a\int_0^{\frac{\pi}{4}}\sqrt{\sec2\theta}\;d(2\theta) \\ & =2a\int_0^{\frac{\pi}{2}}\sqrt{\sec\theta}\;d\theta \\ &(令\cos\theta=x^2,则\sqrt{\sec\theta}=\frac{1}{x},积分上下限由\int_0^{\frac{\pi}{2}}变成\int_1^{0})\\ & =2a\int_1^{0}\frac{1}{x}\;d(arccosx^2)\ \\ & =2a\int_1^{0}\frac{1}{x}\cdot\frac{-1\cdot2x}{\sqrt{1-(x^2)^2}}\;dx \\ & =4a\int_0^{1}\frac{1}{\sqrt{1-x^4}}\;dx \\ \end{aligned} S=404πasec2θ dθ=2a04πsec2θ d(2θ)=2a02πsecθ dθ(cosθ=x2secθ =x102π10)=2a10x1d(arccosx2) =2a10x11(x2)2 12xdx=4a011x4 1dx

②面积

1.平面图形的面积

(图像关于 x 、 y x、y xy轴对称,因此整个面积等于4倍第一象限的面积)
由公式1-5, A = 4 ⋅ 1 2 ∫ 0 π 4 a 2 c o s 2 θ    d θ = a 2 ∫ 0 π 4 c o s 2 θ    d ( 2 θ ) = a 2 ∫ 0 π 2 c o s θ    d θ = a 2 A=4\cdot\frac{1}{2}\int_0^{\frac{\pi}{4}}a^2cos2\theta \;d\theta=a^2\int_0^{\frac{\pi}{4}}cos2\theta \;d(2\theta)=a^2\int_0^{\frac{\pi}{2}}cos\theta \;d\theta=a^2 A=42104πa2cos2θdθ=a204πcos2θd(2θ)=a202πcosθdθ=a2

2.旋转曲面的侧面积(绕极轴旋转)

(图像关于极轴对称,因此整个旋转体的侧面积等于2倍上半轴图形绕极轴旋转的侧面积)
①弧长中已经计算出来,弧微分: d s = a ⋅ 1 cos ⁡ 2 θ    d θ ds=a\cdot\sqrt{\frac{1}{\cos2\theta}}\;d\theta ds=acos2θ1 dθ
由公式1-6,面积元素: d A = 2 π ⋅ ∣ f ( x ) ∣    d s = 2 π ⋅ ∣ r sin ⁡ θ ∣ ⋅    a ⋅ 1 cos ⁡ 2 θ    d θ ( 而 r = a ⋅ c o s 2 θ ) = 2 π ⋅ ∣ a ⋅ c o s 2 θ ⋅ sin ⁡ θ ∣ ⋅    a ⋅ 1 cos ⁡ 2 θ    d θ = 2 π a 2 ∣ sin ⁡ θ ∣    d θ dA=2\pi\cdot|f(x)|\;ds=2\pi\cdot|r \sin \theta|\cdot\;a\cdot\sqrt{\frac{1}{\cos2\theta}}\;d\theta(而r=a\cdot\sqrt{cos2\theta})\\=2\pi\cdot |a\cdot\sqrt{cos2\theta}\cdot \sin \theta|\cdot\;a\cdot\sqrt{\frac{1}{\cos2\theta}}\;d\theta=2\pi a^2|\sin \theta|\;d\theta dA=2πf(x)ds=2πrsinθacos2θ1 dθ(r=acos2θ )=2πacos2θ sinθacos2θ1 dθ=2πa2sinθdθ
A = 2 ∫ 0 π 4 2 π a 2 ∣ sin ⁡ θ ∣    d θ = 4 π a 2 ∫ 0 π 4 sin ⁡ θ    d θ = 4 π a 2 ( 1 − 2 2 ) A=2\int_0^{\frac{\pi}{4}}2\pi a^2|\sin \theta|\;d\theta=4\pi a^2\int_0^{\frac{\pi}{4}}\sin \theta\;d\theta=4\pi a^2(1-\frac{\sqrt{2}}{2}) A=204π2πa2sinθdθ=4πa204πsinθdθ=4πa2(122 )

③体积

参见书籍《一些经典数学问题的另类解算(戈衍三 / 北京理工大学出版社 / 2007-09 / )P120》

四、星形线

直角坐标形式:
x 2 3 + y 2 3 = a 2 3 x^\frac{2}{3}+y^\frac{2}{3}=a^\frac{2}{3} x32+y32=a32
极坐标或参数形式:
   { x = a cos ⁡ 3 t , y = a sin ⁡ 3 t . \; \begin{cases} x=a\cos^3t, \\ y=a\sin^3t.\\ \end{cases} {x=acos3t,y=asin3t.
星形线图形:
星形线

①弧长

(图像关于 x 、 y x、y xy轴对称,因此整个弧长等于4倍第一象限的弧长)
由公式1-2,弧微分: d s = ( a cos ⁡ 3 t )    ′    2 + ( a sin ⁡ 3 t )    ′    2    d t = [ 3 a cos ⁡ 2 t ⋅ ( − sin ⁡ t ) ] 2 + ( 3 a sin ⁡ 2 t ⋅ cos ⁡ t ) 2    d t = 9 a 2 ⋅ cos ⁡ 4 t ⋅ sin ⁡ 2 t + 9 a 2 ⋅ sin ⁡ 4 t ⋅ cos ⁡ 2 t    d t = 9 a 2 ⋅ cos ⁡ 2 t ⋅ sin ⁡ 2 t ( cos ⁡ 2 t ⋅ + sin ⁡ 2 t )    d t = 3 a ⋅ cos ⁡ t ⋅ sin ⁡ t = 3 a 2 ⋅ sin ⁡ 2 t    d t \begin{aligned} ds & =\sqrt{(a\cos^3t)\;'\;^2+(a\sin^3t)\;'\;^2}\;dt \\ & =\sqrt{[3a\cos^2t\cdot(-\sin t)]^2+(3a\sin^2t\cdot\cos t)^2}\;dt \\ & =\sqrt{9a^2\cdot\cos^4t\cdot\sin^2t+9a^2\cdot\sin^4t\cdot\cos^2 t}\;dt \\ & =\sqrt{9a^2\cdot\cos^2t\cdot\sin^2t(\cos^2t\cdot+\sin^2t})\;dt \\ & =3a\cdot\cos t\cdot\sin t \\ & =\frac{3a}{2}\cdot\sin 2t \;dt \\ \end{aligned} ds=(acos3t)2+(asin3t)2 dt=[3acos2t(sint)]2+(3asin2tcost)2 dt=9a2cos4tsin2t+9a2sin4tcos2t dt=9a2cos2tsin2t(cos2t+sin2t )dt=3acostsint=23asin2tdt
弧长: S = 4 ∫ 0 π 2 3 a 2 ⋅ sin ⁡ 2 t    d t = 3 a ∫ 0 π sin ⁡ t    d t = 6 a ∫ 0 π 2 sin ⁡ t    d t = 6 a S=4\int_0^{\frac{\pi}{2}} \frac{3a}{2}\cdot\sin 2t \;dt \\ =3a\int_0^{\pi}\sin t\;dt =6a\int_0^{\frac{\pi}{2}}\sin t\;dt =6a S=402π23asin2tdt=3a0πsintdt=6a02πsintdt=6a

②面积

1.平面图形的面积

(图像关于 x 、 y x、y xy轴对称,因此整个面积等于4倍第一象限的面积)
星形线第一象限与 x x x轴围成的面积由公式1-4, D D D y , x = 0 , x = a y,x=0,x=a yx=0,x=a围成,则 D = ∫ 0 a f ( x )    d x D=\int_0^{a}f(x)\;dx D=0af(x)dx,再根据参数方程换元。
∫ 0 a    d x \int_0^{a}\;dx 0adx ⟹ x = a cos ⁡ 3 t \overset{x=a\cos^3t}\Longrightarrow x=acos3t ∫ π 2 0 d ( a cos ⁡ 3 t ) \int_{\frac{\pi}{2}}^{0 }d(a\cos^3t) 2π0d(acos3t)
A = 4 ∫ π 2 0 a sin ⁡ 3 t    d ( a cos ⁡ 3 t ) = − 12 a 2 ∫ π 2 0 sin ⁡ t 4 ⋅ cos ⁡ 2 t    d t = 12 a 2 ∫ 0 π 2 sin ⁡ t 4 ⋅ ( 1 − sin ⁡ 2 t )    d t = 12 a 2 ( ∫ 0 π 2 sin ⁡ t 4    d t − ∫ 0 π 2 sin ⁡ 6 t    d t ) = 12 a 2 ⋅ ( 3 4 ⋅ 1 2 ⋅ π 2 − 5 6 ⋅ 3 4 ⋅ 1 2 ⋅ π 2 ) = 3 8 π a 2 \begin{aligned} A & =4\int_{\frac{\pi}{2}}^{0 }a\sin^3t\;d(a\cos^3t) \\ & =-12a^2\int_{\frac{\pi}{2}}^{0 }\sin t^4\cdot\cos^2t\;dt \\ & =12a^2\int_0^{\frac{\pi}{2}}\sin t^4\cdot(1-\sin^2t)\;dt \\ & =12a^2(\int_0^{\frac{\pi}{2}}\sin t^4\;dt-\int_0^{\frac{\pi}{2}}\sin^6t\;dt) \\ & =12a^2\cdot(\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2}-\frac{5}{6}\cdot\frac{3}{4}\cdot \frac{1}{2}\cdot \frac{\pi}{2}) \\ & =\frac{3}{8}\pi a^2 \\ \end{aligned} A=42π0asin3td(acos3t)=12a22π0sint4cos2tdt=12a202πsint4(1sin2t)dt=12a2(02πsint4dt02πsin6tdt)=12a2(43212π6543212π)=83πa2

2.旋转曲面的侧面积(绕x轴旋转)

①弧长中已经计算出来,弧微分: d s = 3 a 2 ⋅ sin ⁡ 2 t    d t ds=\frac{3a}{2}\cdot\sin 2t \;dt ds=23asin2tdt
由公式1-6,面积元素:
d A = 2 π ⋅ ∣ f ( x ) ∣    d s = 2 π ⋅ ∣ a sin ⁡ 3 t ∣ ⋅ 3 a 2 ⋅ sin ⁡ 2 t    d t = 3 a 2 π ⋅ ∣ sin ⁡ 3 t ∣ ⋅ sin ⁡ 2 t    d t = 6 a 2 π ⋅ sin ⁡ 4 t ⋅ cos ⁡ t    d t dA=2\pi\cdot|f(x)|\;ds=2\pi\cdot|a\sin^3t|\cdot\frac{3a}{2}\cdot\sin 2t \;dt \\ =3a^2\pi\cdot|\sin^3t|\cdot\sin 2t\;dt=6a^2\pi\cdot\sin^4t\cdot\cos t\;dt dA=2πf(x)ds=2πasin3t23asin2tdt=3a2πsin3tsin2tdt=6a2πsin4tcostdt
A = ∫ 0 π 6 a 2 π ⋅ sin ⁡ 4 t ⋅ cos ⁡ t    d t = 12 a 2 π ∫ 0 π 2 s i n 4 t    d ( sin ⁡ t ) = 12 a 2 π ∫ 0 1 t 4    d t = 12 5 π a 2 \begin{aligned} A & =\int_0^{\pi }6a^2\pi\cdot\sin^4t\cdot\cos t\;dt \\ & =12a^2\pi\int_0^{\frac{\pi}{2}}sin^4t\;d(\sin t) \\ & =12a^2\pi\int_0^{1}t^4\;dt \\ & =\frac{12}{5}\pi a^2 \\ \end{aligned} A=0π6a2πsin4tcostdt=12a2π02πsin4td(sint)=12a2π01t4dt=512πa2

③体积

(由于星形线关于 x 、 y x、y xy轴对称,因此绕x轴或y轴旋转一周的体积相等)
星形线在x轴上半轴的面积 D D D y , x = − a , x = a y,x=-a,x=a yx=a,x=a围成,则该面积绕 x x x轴旋转一周后,由公式1-7,
V x = π ⋅ ∫ a b f 2 ( x )    d x = π ⋅ ∫ − a a f 2 ( x )    d x V_x=\pi\cdot\int_a^b{f^2(x)\;dx}=\pi\cdot\int_{-a}^{a}{f^2(x)\;dx} Vx=πabf2(x)dx=πaaf2(x)dx,再根据参数方程换元。
∫ − a a d x \int_{-a}^{a}dx aadx ⟹ x = a cos ⁡ 3 t \overset{x=a\cos^3t}\Longrightarrow x=acos3t ∫ π 0 d ( a cos ⁡ 3 t ) \int_\pi^{0}d(a\cos^3t) π0d(acos3t)
V x = π ∫ π 0 ( a sin ⁡ 3 t ) 2    d ( a cos ⁡ 3 t ) = − 3 π a 3 ∫ π 0 sin ⁡ 7 t ⋅ cos ⁡ 2 t    d t = 3 π a 3 ∫ 0 π sin ⁡ 7 t ⋅ ( 1 − sin ⁡ 2 t )    d t = 6 π a 3 ( ∫ 0 π 2 sin ⁡ t 7    d t − ∫ 0 π 2 sin ⁡ 9 t    d t ) = 6 π a 3 ⋅ ( 6 7 ⋅ 4 5 ⋅ 2 3 ⋅ 1 − 8 9 ⋅ 6 7 ⋅ 4 5 ⋅ 2 3 ⋅ 1 ) = 32 105 π a 3 \begin{aligned} V_x & =\pi\int_\pi^{0 }(a\sin^3t)^2\;d(a\cos^3t) \\ & =-3\pi a^3\int_\pi^{0 }\sin^7t\cdot\cos^2t\;dt \\ & =3\pi a^3\int_0^{\pi}\sin^7t\cdot(1-\sin^2t)\;dt \\ & =6\pi a^3(\int_0^{\frac{\pi}{2}}\sin t^7\;dt-\int_0^{\frac{\pi}{2}}\sin^9t\;dt) \\ & =6\pi a^3\cdot(\frac{6}{7}\cdot \frac{4}{5}\cdot \frac{2}{3}\cdot1-\frac{8}{9}\cdot\frac{6}{7}\cdot \frac{4}{5}\cdot \frac{2}{3}\cdot1) \\ & =\frac{32}{105}\pi a^3 \\ \end{aligned} Vx=ππ0(asin3t)2d(acos3t)=3πa3π0sin7tcos2tdt=3πa30πsin7t(1sin2t)dt=6πa3(02πsint7dt02πsin9tdt)=6πa3(7654321987654321)=10532πa3

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值