解码金融数据分析:A股股票筛选与贝塔值计算
在金融市场中,有效的数据分析和模型构建对于投资者来说至关重要。本文将详细介绍一个用于筛选A股股票并计算其贝塔值的Python函数。我们将深入解析代码背后的逻辑和数学原理,帮助你更好地理解如何利用技术手段优化投资决策。
(编者说明:本文所述的筛选函数是一个负beta策略中的股票筛选函数,本文内容仅供学习研究使用。)
函数定义与初步筛选
首先,我们来看一下函数的基本定义:
def 筛选(间隔天数):
if 间隔天数 % 5 == 0:
a = []
A股股票 = get_Ashares(date=None)
st_status = get_stock_status(A股股票, 'ST')
halt_status = get_stock_status(A股股票, 'HALT')
delisting_status = get_stock_status(A股股票, 'DELISTING')
for stock in A股股票.copy():
if st_status[stock] or halt_status[stock] or delisting_status[stock]:
A股股票.remove(stock)
- 参数:
间隔天数
是一个整数,表示当前日期与策略开始运行日期的间隔天数。 - 条件: 如果
间隔天数
是5的倍数,则执行后续操作。这表明每5天进行一次股票筛选。 - 初始化列表: 创建一个空列表
a
,用于存储最终筛选出的股票代码。 - 获取A股股票列表: 调用
get_Ashares
函数获取所有A股股票的代码列表。 - 获取股票状态: 分别调用
get_stock_status
函数获取每只股票的ST状态、停牌状态和退市状态。 - 剔除不符合条件的股票: 遍历A股股票列表,如果某只股票处于ST状态、停牌状态或退市状态,则将其从列表中移除。
创建数据表格
数据表格 = pd.DataFrame(index=A股股票)
数据表格['贝塔'] = 0
数据表格['贝塔'] = pd.to_numeric(数据表格['贝塔'])
- 创建数据表格: 创建一个以A股股票代码为索引的DataFrame,并初始化一个名为
贝塔
的列,初始值为0,确保该列的数据类型为数值型。
获取沪深300指数的历史数据
HS300 = get_history(20, '1d', 'close', '000300.SS').pct_change()
HS300 = HS300.fillna(HS300.mean())
HS300 = np.array(HS300['close'].values)
市场的方差 = np.var(HS300)
- 获取历史数据: 获取过去20个交易日的沪深300指数收盘价,并计算每日收益率。
- 处理缺失值: 使用均值填充缺失值。
- 转换为NumPy数组: 将收益率转换为NumPy数组。
- 计算方差: 计算沪深300指数收益率的方差。
计算每只股票的贝塔值
for stock in A股股票:
stock_data = get_history(11, '1d', 'close', stock).pct_change()
stock_data = np.array(stock_data.fillna(stock_data.mean())['close'].values)
if len(stock_data) > 0: # 防止出现没有数据的情况
cov = np.cov(stock_data, HS300[-len(stock_data):])
cov = cov[0][1]
BETA = cov / 市场的方差
if math.isnan(BETA) == False and BETA < 0:
数据表格.loc[stock, '贝塔'] = BETA
- 获取股票历史数据: 对每只股票,获取过去11个交易日的收盘价,并计算每日收益率。
- 处理缺失值: 使用均值填充可能存在的缺失值。
- 计算协方差: 计算股票收益率与沪深300指数收益率的协方差。
- 计算贝塔值: 贝塔值 ( \beta ) 通过将协方差除以市场方差来计算。
- 条件判断: 只有当贝塔值有效且小于0时,才将其记录到数据表格的相应位置。
筛选出前30只股票
数据表格 = 数据表格.sort_values(by='贝塔').head(30)
a = np.array(数据表格.index)
- 排序与筛选: 按贝塔值升序排序数据表格,并取前30只股票。
- 返回结果: 将这些股票的代码转换为NumPy数组并赋值给
a
。
返回结果
return a
- 返回结果: 返回筛选出的前30只股票的代码列表。
数学原理
收益率计算
首先,代码获取每只股票过去11个交易日的收盘价,并计算每日收益率:
stock_data = get_history(11, '1d', 'close', stock).pct_change()
pct_change()
: 计算相邻两个交易日的收盘价的百分比变化,即每日收益率。假设 P t P_t Pt 表示第 t 天的收盘价,那么每日收益率 R t R_t Rt 可以表示为:
R t = P t − P t − 1 P t − 1 R_t = \frac{P_t - P_{t-1}}{P_{t-1}} Rt=Pt−1Pt−Pt−1
缺失值处理
接下来,使用均值填充可能存在的缺失值:
stock_data = np.array(stock_data.fillna(stock_data.mean())['close'].values)
fillna(stock_data.mean())
: 使用收益率的均值填充缺失值,确保数据完整。
协方差计算
然后,计算股票收益率与市场指数收益率的协方差:
cov = np.cov(stock_data, HS300[-len(stock_data):])
cov = cov[0][1]
np.cov(stock_data, HS300[-len(stock_data):])
: 计算股票收益率和市场指数收益率的协方差矩阵。这里HS300[-len(stock_data):]
表示市场指数在相同时间段内的收益率。cov[0][1]
: 从协方差矩阵中提取股票收益率和市场指数收益率之间的协方差。协方差矩阵的形式如下:
( Var ( R s ) Cov ( R s , R m ) Cov ( R m , R s ) Var ( R m ) ) \begin{pmatrix} \text{Var}(R_s) & \text{Cov}(R_s, R_m) \\ \text{Cov}(R_m, R_s) & \text{Var}(R_m) \end{pmatrix} (Var(Rs)Cov(Rm,Rs)Cov(Rs,Rm)Var(Rm))
其中, Var ( R s ) \text{Var}(R_s) Var(Rs) 是股票收益率的方差, Var ( R m ) \text{Var}(R_m) Var(Rm) 是市场指数收益率的方差, Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 是股票收益率和市场指数收益率的协方差。
贝塔值计算
最后,计算贝塔值:
BETA = cov / 市场的方差
- 贝塔值公式:
β = Cov ( R s , R m ) Var ( R m ) \beta = \frac{\text{Cov}(R_s, R_m)}{\text{Var}(R_m)} β=Var(Rm)Cov(Rs,Rm)
其中, Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 是股票收益率和市场指数收益率的协方差, Var ( R m ) \text{Var}(R_m) Var(Rm) 是市场指数收益率的方差。
条件判断
只有当贝塔值有效且小于0时,才将其记录到数据表格中:
if math.isnan(BETA) == False and BETA < 0:
数据表格.loc[stock, '贝塔'] = BETA
math.isnan(BETA) == False
: 检查贝塔值是否为有效数值(不是NaN)。BETA < 0
: 检查贝塔值是否小于0。贝塔值小于0表示该股票与市场呈负相关,即市场上涨时股票下跌,市场下跌时股票上涨。
为什么贝塔值能够衡量股票或投资组合相对于市场整体波动性的敏感度
贝塔值(Beta)是金融领域中一个非常重要的概念,用于衡量股票或投资组合相对于市场整体波动性的敏感度。其计算公式为:
β = Cov ( R s , R m ) Var ( R m ) \beta = \frac{\text{Cov}(R_s, R_m)}{\text{Var}(R_m)} β=Var(Rm)Cov(Rs,Rm)
其中:
- Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 是股票收益率 R s R_s Rs 和市场指数收益率 R m R_m Rm 的协方差。
- Var ( R m ) \text{Var}(R_m) Var(Rm) 是市场指数收益率 R m R_m Rm 的方差。
1. 协方差的意义
协方差 Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 衡量了股票收益率 ( R_s ) 和市场指数收益率 $$ R_m ) 之间的线性关系。具体来说:
- 如果 Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 为正,表示股票和市场通常同向变动,即市场上涨时股票也倾向于上涨,市场下跌时股票也倾向于下跌。
- 如果 Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm)为负,表示股票和市场通常反向变动,即市场上涨时股票倾向于下跌,市场下跌时股票倾向于上涨。
- 如果 Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 接近于零,表示股票和市场之间几乎没有线性关系。
2. 方差的意义
市场指数收益率的方差 Var ( R m ) \text{Var}(R_m) Var(Rm) 衡量了市场指数收益率的波动程度。具体来说:
- 方差越大,表示市场指数的波动性越高。
- 方差越小,表示市场指数的波动性越低。
3. 贝塔值的解释
贝塔值 β \beta β 通过将协方差 Cov ( R s , R m ) \text{Cov}(R_s, R_m) Cov(Rs,Rm) 除以市场指数收益率的方差 Var ( R m ) \text{Var}(R_m) Var(Rm),标准化了股票收益率与市场指数收益率之间的关系。这样做的好处是:
β = Cov ( R s , R m ) Var ( R m ) \beta = \frac{\text{Cov}(R_s, R_m)}{\text{Var}(R_m)} β=Var(Rm)Cov(Rs,Rm)
这种表示方法使得贝塔值成为了评估股票或投资组合系统风险的重要指标。
- 标准化: 使得不同股票的贝塔值具有可比性,因为它们都是相对于同一个市场指数的波动性来衡量的。
- 敏感度: 贝塔值直接反映了股票或投资组合对市场波动的敏感度。
具体来说:
- 贝塔值等于1:表示股票或投资组合的波动性与市场整体波动性相同。如果市场上涨1%,股票或投资组合也预计上涨1%;如果市场下跌1%,股票或投资组合也预计下跌1%。
- 贝塔值大于1:表示股票或投资组合的波动性大于市场整体波动性。例如,贝塔值为1.5的股票,如果市场上涨1%,股票预计上涨1.5%;如果市场下跌1%,股票预计下跌1.5%。
- 贝塔值小于1:表示股票或投资组合的波动性小于市场整体波动性。例如,贝塔值为0.5的股票,如果市场上涨1%,股票预计上涨0.5%;如果市场下跌1%,股票预计下跌0.5%。
- 贝塔值小于0:表示股票或投资组合与市场呈负相关。例如,贝塔值为-0.5的股票,如果市场上涨1%,股票预计下跌0.5%;如果市场下跌1%,股票预计上涨0.5%。
实际应用
在实际应用中,贝塔值常用于:
- 风险管理: 投资者可以通过选择不同贝塔值的股票或投资组合来调整其风险敞口。
- 资产配置: 机构投资者和基金经理可以使用贝塔值来优化资产配置,确保投资组合的风险水平符合其投资策略。
- 业绩评估: 贝塔值可以帮助评估投资组合的表现,尤其是在市场波动较大的情况下。
总结
通过本文的介绍,我们详细了解了如何利用Python编写一个函数来筛选A股股票并计算其贝塔值。贝塔值作为一个重要的金融指标,能够帮助投资者更好地理解股票或投资组合对市场波动的敏感度,从而做出更明智的投资决策。希望这篇文章对你在金融数据分析和投资策略制定方面有所帮助。