用于OD需求预测的新型动态节点-边缘注意力网络

本文提出了一种新型的动态节点-边缘注意力网络(DNEAT)来解决起点-终点(OD)需求预测问题。DNEAT利用k-TNEAT层捕捉动态OD图中节点和边的拓扑时间演化,优于传统区域预测方法。在成都和纽约的实际数据集上,DNEAT表现出优于六种基线模型的性能,尤其在处理高稀疏需求数据时更具优势。
摘要由CSDN通过智能技术生成

在这里插入图片描述

paper title
《DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction》

导读

网约车服务平台在世界各地发展迅速,吸引了广泛的研究兴趣。网约车服务平台的一个关键问题是如何实现准确可靠的需求预测。然而,已有的研究大多集中在区域层面的需求预测上,而对起点-终点(OD)需求预测问题的研究较少。这篇文章从图的角度出发,构造了动态OD图来描述网约车需求数据。文章提出了一种新的神经结构–动态节点-边缘注意网络(DNEAT),从需求产生和吸引的角度来解决OD需求预测的独特挑战。与以往的研究不同,在DNEAT中,提出了一种新的神经层,称为k-hop时态节点-边注意层(k-TNEAT),用于捕捉动态OD图中节点拓扑的时间演化,而不是预先定义的区域之间的关系。在两个真实的网约车需求数据集(来自中国成都和纽约市)上对提出的模型进行了评估。实验结果表明,该模型的性能优于6种基线模型,对高稀疏度的需求数据具有更强的鲁棒性

模型方法

DNEAT:动态节点-边缘注意力网络

DNEAT由需求生成模块和需求吸引模块两部分组成。这两个部分的设计目的是从不同的角度学习动态OD图的图形表示。每个部分由三个有组织的k-TNEAT层组成,用于提取动态节点拓扑的特征并生成节点和边的学习表示。然后,使用这些学习的表示(即特征)来预测下一个时间间隔的OD需求。

1 k-TNEAT layer
K-TNEAT层在图序列Ω上操作。K-TNEAT层的输入包括两个分量:(1)节点表示图片,图片∈Rn×Γ×C和图片∈RΓ×C;(2)边表示图片,图片∈Rn×n×Γ×C和图片∈RΓ×C。对于每个节点(或边),输入表示可以被视为具有C个通道的长度为Γ序列(每个时间间隔的特征数)。输出是一组新的结点表示和边表示,它们捕获了以每个结点为中心的动态结点拓扑的演化模式

典型的k-TNEAT层由两个k-hop时间编码层和一个时间节点边缘注意力层组成;下图展示出了k-TNEAT层的总体架构。接下来两个小节详细介绍了k-hop时间编码层和时间节点边缘注意层。此外,残差连接在时间节点-边缘注意层使用,随后是层归一化层。
在这里插入图片描述

1.1k-hop 时间编码层

对于图序列,节点i的输入表示为∈RΓ×C,边(i,j)的输入表示为∈RΓ×C。卷积运算的工作方式如下。一组大小为RF×C、步长为1(无填充)的滤波器用于在的时间维度上滑动。其中F是每个滤波器的接收场大小,每个滤波器的深度是C(即输入表示的通道大小)。每个过滤器的滑动操作将生成Γ-F+1时态图。对于每个&#

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值