终身学习方法-“三再原则
对于学习,我一直坚持自己的“三再原则”——再学习、再定位、再创造。
再学习
从学生到职场新人,再到一名合格的工程师,并不代表“新人”状态结束,而是新阶段的开始,要时刻保持“新人”精神,不断汲取新的知识,获取新的技能,坚持学习才能与时俱进。
再定位
要根据工作和环境的不同,及时调整自身定位,从实际出发,一步一个脚印,稳扎稳打,步步攀升。
再创造
在已有理论和前辈们的基础上,敢于去发现问题,解决问题,创造更大的价值。
AI人工智能入门学习方法
最后再谈谈最近热火朝天的AI人工智能的入门学习心得:总而言之就是突破AI思维、使用适用的入门学习资料,动手实践。
1、突破AI思维
我认为学习AI,先进行思维突破最重要。先理解以下几点:
1)AI是什么
AI是指人工智能,我简单说就是人工制造的智能程序,对,终究还是个程序;
2)AI分哪几块
AI目前主要分为机器学习、神经网络、深度学习这三块,对于入门来说深度学习门槛较高,学好机器学习和神经网络就很好了,再讲确切一点是学好机器学习和图像识别(神经网络的范畴,常用的是YOLO算法)就很好了,机器学习可以用来做数据分析,图像识别应用面也很广;
3)AI的运行机制是什么
对于入门者来说也不用理解太细,先简单理解就是输入、AI算法、输出这三块。输入这块是指样本数据(如指标数据、图片等和对应打标的标签(比如0和1,或猫和狗)),样本数据分为测试集和验证集,用测试集+AI算法+训练脚本得出训练好的AI模型,用验证集+训练好的AI模型+验证脚本得出验证结果,即预测结果。AI算法在机器学习中可以按需要选择(如常用的决策树、随机森林、lightGBM等),在图像识别中可以选择常用的YOLO算法,AI算法基本都是现成的,也不需要我们入门者去编写,基本都是一些比较复杂的程序算法实现的,具体怎么实现的我们入门者不用太在意,主要就是明白用的那个AI算法有什么特性和是否适用于当前要做的这个事情即可。我们要做最多也就是改一改AI算法的一些基础参数,一般都有默认参数和或网上的推荐参数。输出这块就是在测试集和AI算法都配置好训练完AI模型之后,拿验证集进行预测,得出预测结果。这样理解下来,AI的运行机制(输入+AI算法+输出)和普通的函数调用(输入+函数+输出)的运行机制是不是差不多了呢,简单这样理解,AI就容易理解和入门了。
4)为什么AI能做到我们常人无法轻易做到的事情
因为众多的前辈们已经把他们的研究成果都写进了AI算法中,AI算法内部确实比较复杂,它的判定规则也比较复杂,但我们入门者可以使用现成的AI算法,站在巨人的肩膀上,可以更加轻松的用AI来帮助我们工作;
2、使用适用的入门学习资料
AI思维有了,后续的AI入门学习就容易多了,然后学习资料的选择也很重要,明确自己当前的学习目标,不要想着一口气吃一个胖子。如果是0基础,那就先以基础入门作为目标,学习资料可以选择51CTO、B站上的一些免费资料比如机器学习/图像识别7天入门视频课程这种,CSDN上也有很多简单项目的代码和学习材料,简单易懂,能够快速搭建起AI机器学习和图像识别的知识框架,按照课程里面提供的几个简单项目案例自己也去实际敲几遍代码,跑几遍数据,很快就能掌握机器学习基础入门的知识和基础操作,剩下的就是进阶学习和举一反三;能够先学会机器学习和图像识别就已经很大程度上提升了自身的技能,能够为公司做出很多贡献了。
3、动手实践
除了2中提到的跟着学习资料中的案例动手实践外,还可以自己根据自己日常能搜集到的需求或项目需求,按需搜集相关数据源,进行数据整合、清洗,选择适用的AI算法,训练AI模型,然后进行预测或图像识别;
纸上得来终觉浅,绝知此事要躬行。含泪播种,含笑收获。高速发展的时代,既有风险,也有机遇,让我们一起携手走向美好明天!