Eyeriss中的RS(行固定)数据流

Eyeriss中的RS(行固定)数据流

Eyeriss想必大家都读过,但是你在第一次读v1的时候可能并不清楚他所讲的RS数据流具体是什么样的。笔者在这里专门对Eyeriss v1中的RS(行固定)数据流进行详细举例说明。

原文中有关RS数据流的部分:
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks”中的第四段。
“Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks”中的第V部分。

原文中有关RS数据流的图如下:
在这里插入图片描述
在这里插入图片描述

第一次看到原文中的描述和这几张图片笔者一脸懵逼,这数据到底是怎么流动的呢?
于是笔者亲自拿出笔纸写写画画,终于大致搞明白了PE中的数据流。在这里分享给需要了解RS数据流的人。

卷积运算大家应该都清楚,这里不必赘述。接下来直接上干货。

1D Convolution Primitives

首先对于原文中的“1D Convolution Primitives”的操作,它是把2D卷积分解成一行一行的卷积来算。每个PE里面装权重的一行和输入特征的一行,然后权重的一行和输入特征的一行进行一维卷积。举个例子:

输入特征矩阵D:

[01,02,03,04,05,06]
[07,08,09,10,11,12]
[13,14,15&#
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值