从R-CNN 和 SPP-Net 到 Fast R-CNN

Fast R-CNN 在SPP-Net 上更进一步,它更好地实现了对R-CNN的加速工作,R-CNN的基础上Fast R-CNN主要有以下几个方面的改进。
1)借鉴了 SPP-Net 的思路,提出了简化版的ROI Pooling(没有使用Spatial Pyramid Pooling),同时加入了候选框映射的功能,使得网络能够进行反向传播,解决了SPP的整体网络训练的问题。
2)多任务Loss层:一方面使用了Softmax代替SVM进行多分类,另一方面我们使用SmoothL1Loss取代了Bounding Box 回归。

Fast R-CNN的基本工作流程如下所示。
1)接收一个图像,使用Selective Search选择大约2000个从上到下的类无关候选区域(proposal)。
2)对整张图片进行卷积操作提取特征,得到Feature Map。
3)找到每个候选框在Feature Map 中的映射 patch,将 patch 作为每个候选框的特征输入到 ROI 池化层及后面的层。
4)将提取出的候选框的特征输入到Softmax分类器中进行分类,替换了R-CNN的 SVM 分类。
5)使用SmoothL1 Loss 回归的方法对候选框进一步调整位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值