残差注意力网络原理与应用分析

本文深入探讨残差注意力网络,通过堆叠注意力模块和底部向上顶部向下结构,实现对复杂图像的逐步细化关注。网络采用注意力残差学习,提高深层特征表达,同时增强模型鲁棒性,有效应对噪声标签。实验表明,相较于基准网络ResNet-200,该网络在精度和FLOPs方面有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Attention not only serves to select a focused location but also enhances different representations of objects at that location.

Recent advances of image classification focus on training feedforward convolutional neural networks using “very deep” structure.

Inspired by the attention mechanism and recent advances in the deep neural network, we propose Residual Attention Network, a convolutional network that adopts mixed attention mechanism in “very deep” structure.

残差注意力网络由多个注意力模块组成,这些注意力模块产生注意力感知特征。不同模块的注意力感知特征随着层次的加深而自适应地变化。

直接堆叠注意力模块会导致显著的性能下降。因此,我们提出了注意力残差学习机制来优化数百层的极深层残差注意力网络。

网络结构

特征
特征与注意力掩码的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值